Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.


Journal

FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484

Informations de publication

Date de publication:
03 2019
Historique:
pubmed: 13 12 2018
medline: 12 5 2020
entrez: 13 12 2018
Statut: ppublish

Résumé

Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid β-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.

Identifiants

pubmed: 30540494
doi: 10.1096/fj.201801498R
pmc: PMC6404569
doi:

Substances chimiques

ABCD3 protein, human 0
ATP-Binding Cassette Transporters 0
Abcd3 protein, mouse 0
Fatty Acids 0
Lauric Acids 0
Membrane Proteins 0
Recombinant Proteins 0
acylcarnitine 0
lauric acid 1160N9NU9U
Palmitic Acid 2V16EO95H1
Hsd17b4 protein, mouse EC 1.1.1.119
Carnitine O-Palmitoyltransferase EC 2.3.1.21
Peroxisomal Multifunctional Protein-2 EC 4.2.1.107
HSD17B4 protein, human EC 4.2.1.119
Ehhadh protein, mouse EC 4.2.1.17
Peroxisomal Bifunctional Enzyme EC 4.2.1.17
Carnitine S7UI8SM58A

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

4355-4364

Subventions

Organisme : NIDDK NIH HHS
ID : R01 DK113172
Pays : United States

Références

Clin Chim Acta. 1999 Mar;281(1-2):1-17
pubmed: 10217622
J Biol Chem. 1999 May 28;274(22):15775-80
pubmed: 10336479
Pediatr Neurol. 2000 Feb;22(2):148-50
pubmed: 10738923
J Biol Chem. 2000 May 26;275(21):16329-36
pubmed: 10748062
Pediatrics. 2001 Jun;107(6):E103
pubmed: 11389301
Arch Biochem Biophys. 2003 Aug 1;416(1):101-9
pubmed: 12859986
J Biol Chem. 2004 May 7;279(19):19574-9
pubmed: 14982940
Cytogenet Genome Res. 2004;106(1):28-32
pubmed: 15218237
J Biol Chem. 2005 Mar 11;280(10):9265-71
pubmed: 15611129
Biochem J. 2005 Jul 15;389(Pt 2):397-401
pubmed: 15773815
Proc Natl Acad Sci U S A. 1941 Nov 15;27(11):499-506
pubmed: 16588492
Annu Rev Biochem. 2006;75:295-332
pubmed: 16756494
Chem Biol Interact. 2006 Sep 25;162(3):195-211
pubmed: 16919614
N Engl J Med. 2007 Apr 26;356(17):1736-41
pubmed: 17460227
Mol Genet Metab. 2008 Apr;93(4):403-10
pubmed: 18077198
Biochim Biophys Acta. 2009 Aug;1791(8):806-15
pubmed: 19465148
Science. 1977 Aug 5;197(4303):580-1
pubmed: 195342
Neurol Res. 2011 Jan;33(1):24-32
pubmed: 20810031
Hum Mutat. 2011 Jan;32(1):59-69
pubmed: 21031596
Biochim Biophys Acta. 2012 Sep;1822(9):1374-86
pubmed: 22206997
J Lipid Res. 2012 Jul;53(7):1296-303
pubmed: 22534643
Biochim Biophys Acta. 2012 Sep;1822(9):1430-41
pubmed: 22871920
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1279-84
pubmed: 23288899
FASEB J. 2013 May;27(5):2039-44
pubmed: 23322164
J Biol Chem. 2013 Jun 28;288(26):19269-79
pubmed: 23671276
Biochim Biophys Acta. 2013 Sep;1831(9):1467-74
pubmed: 23850792
Cell Rep. 2013 Oct 17;5(1):248-58
pubmed: 24075987
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Biochim Biophys Acta. 2014 Apr 4;1841(4):563-8
pubmed: 24333844
Nat Methods. 2014 Apr;11(4):361-2
pubmed: 24681721
Hum Mol Genet. 2015 Jan 15;24(2):361-70
pubmed: 25168382
Nat Commun. 2014 Sep 03;5:4767
pubmed: 25182477
J Inherit Metab Dis. 2015 Jul;38(4):681-702
pubmed: 25687155
Science. 2015 May 8;348(6235):648-60
pubmed: 25954001
Anal Chem. 2015 Sep 1;87(17):8994-9001
pubmed: 26270397
Mol Genet Metab. 2015 Dec;116(4):231-41
pubmed: 26458767
Annu Rev Physiol. 2016;78:23-44
pubmed: 26474213
Biochem Soc Trans. 2015 Oct;43(5):959-65
pubmed: 26517910
Mol Genet Metab Rep. 2017 May 02;11:59-61
pubmed: 28516040
J Biol Chem. 1978 Mar 10;253(5):1522-8
pubmed: 627552
J Biol Chem. 1984 Nov 10;259(21):13089-95
pubmed: 6436243
J Biochem. 1983 Aug;94(2):529-42
pubmed: 6630173
Arch Biochem Biophys. 1983 Apr 1;222(1):123-32
pubmed: 6838215
Biochim Biophys Acta. 1995 Nov 7;1264(2):215-22
pubmed: 7495866
Biochem Biophys Res Commun. 1995 Aug 24;213(3):1035-41
pubmed: 7654220
Annu Rev Cell Biol. 1993;9:445-78
pubmed: 8280468
J Inherit Metab Dis. 1995;18 Suppl 1:113-24
pubmed: 9053546
J Lipid Res. 1998 Jan;39(1):66-74
pubmed: 9469587
Clin Chim Acta. 1998 May 25;273(2):161-70
pubmed: 9657346
J Inherit Metab Dis. 1998 Oct;21(7):753-60
pubmed: 9819705

Auteurs

Sara Violante (S)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Mount Sinai Genomics, Incorporated, New York, New York, USA.

Nihad Achetib (N)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Carlo W T van Roermund (CWT)

Department of Clinical Chemistry, Amsterdam, The Netherlands.
Department of Pediatrics, Amsterdam, The Netherlands.
Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and.

Jacob Hagen (J)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Tetyana Dodatko (T)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Frédéric M Vaz (FM)

Department of Clinical Chemistry, Amsterdam, The Netherlands.
Department of Pediatrics, Amsterdam, The Netherlands.
Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and.

Hans R Waterham (HR)

Department of Clinical Chemistry, Amsterdam, The Netherlands.
Department of Pediatrics, Amsterdam, The Netherlands.
Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and.

Hongjie Chen (H)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Mount Sinai Genomics, Incorporated, New York, New York, USA.

Myriam Baes (M)

Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium.

Chunli Yu (C)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Mount Sinai Genomics, Incorporated, New York, New York, USA.

Carmen A Argmann (CA)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Sander M Houten (SM)

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH