DNA Binding and Molecular Dynamic Studies of Polycyclic Tetramate Macrolactams (PTM) with Potential Anticancer Activity Isolated from a Sponge-Associated Streptomyces zhaozhouensis subsp. mycale subsp. nov.
Animals
Antineoplastic Agents
/ chemistry
Apoptosis
/ drug effects
Binding Sites
Cell Line, Tumor
Cell Survival
/ drug effects
DNA
/ chemistry
Epithelial Cells
/ drug effects
G1 Phase Cell Cycle Checkpoints
/ drug effects
Humans
Inhibitory Concentration 50
Lactams
/ chemistry
Lactams, Macrocyclic
/ chemistry
Molecular Docking Simulation
Nucleic Acid Conformation
Phylogeny
Porifera
/ microbiology
RNA, Ribosomal, 16S
/ genetics
S Phase Cell Cycle Checkpoints
/ drug effects
Streptomyces
/ chemistry
Symbiosis
/ physiology
Anticancer
Apoptosis
Clifednamide
Ikarugamycin
Polycyclic tetramate macrolactams
Streptomyces
Journal
Marine biotechnology (New York, N.Y.)
ISSN: 1436-2236
Titre abrégé: Mar Biotechnol (NY)
Pays: United States
ID NLM: 100892712
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
10
01
2018
accepted:
22
11
2018
pubmed:
14
12
2018
medline:
8
6
2019
entrez:
14
12
2018
Statut:
ppublish
Résumé
A sponge-associated actinomycete (strain MCCB267) was isolated from a marine sponge Mycale sp. collected in the Indian Ocean off the Southeast coast of India. Phylogenetic studies of this strain using 16S rRNA gene sequencing showed high sequence similarity to Streptomyces zhaozhouensis. However, strain MCCB267 showed distinct physiological and biochemical characteristic features and was thus designated as S. zhaozhouensis subsp. mycale. subsp. nov. A cytotoxicity-guided fractionation of the crude ethyl acetate extract of strain MCCB267 culture medium yielded four pure compounds belonging to the polycyclic tetramate macrolactam (PTM) family of natural products: ikarugamycin (IK) (1), clifednamide A (CF) (2), 30-oxo-28-N-methylikarugamycin (OI) (3), and 28-N-methylikarugamycin (MI) (4). The four compounds exhibited promising cytotoxic activity against NCI-H460 lung carcinoma cells in vitro, by inducing cell death via apoptosis. Flow cytometric analysis revealed that 1, 3, and 4 induced cell cycle arrest during G1 phase in the NCI-H460 cell line, whereas 2 induced cell arrest in the S phase. A concentration-dependent accumulation of cells in the sub-G1 phase was also detected upon treatment of the cancer cell line with compounds 1-4. The in vitro cytotoxicity studies were supported by molecular docking and molecular dynamic simulation analyses. An in silico study revealed that the PTMs can bind to the minor groove of DNA and subsequently induce the apoptotic stimuli leading to cell death. The characterization of the isolated actinomycete, the study of the mode of action of the four PTMs, 1-4, and the molecular docking and molecular dynamic simulations analyses are herein described.
Identifiants
pubmed: 30542952
doi: 10.1007/s10126-018-9866-9
pii: 10.1007/s10126-018-9866-9
doi:
Substances chimiques
Antineoplastic Agents
0
Lactams
0
Lactams, Macrocyclic
0
RNA, Ribosomal, 16S
0
ikarugamycin
36531-78-9
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
124-137Subventions
Organisme : Kerala State Council for Science, Technology and Environment
ID : 292/2016/KSCSTE dated 07.07.2016
Références
Acc Chem Res. 2000 Dec;33(12):889-97
pubmed: 11123888
J Virol. 2001 Mar;75(5):2488-92
pubmed: 11160755
Appl Microbiol Biotechnol. 2002 Jul;59(2-3):125-34
pubmed: 12111137
Environ Microbiol. 2002 Nov;4(11):770-3
pubmed: 12460286
Antonie Van Leeuwenhoek. 2003;83(2):107-16
pubmed: 12785304
Drug Discov Today. 2003 Jun 15;8(12):536-44
pubmed: 12821301
Acta Crystallogr D Biol Crystallogr. 2004 Aug;60(Pt 8):1355-63
pubmed: 15272157
J Antibiot (Tokyo). 2005 Jan;58(1):1-26
pubmed: 15813176
Antonie Van Leeuwenhoek. 2006 Aug;90(2):159-69
pubmed: 16871424
J Struct Biol. 2007 Jan;157(1):281-7
pubmed: 16963278
Biophys J. 2007 Jun 1;92(11):3817-29
pubmed: 17351000
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4587-94
pubmed: 18250337
Mar Drugs. 2008 Jan 23;6(1):12-24
pubmed: 18648671
Nat Prod Rep. 2009 Mar;26(3):338-62
pubmed: 19240945
Int J Syst Evol Microbiol. 2009 Jun;59(Pt 6):1492-6
pubmed: 19502341
Mar Drugs. 2009 Jun 11;7(2):210-48
pubmed: 19597582
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11692-7
pubmed: 20547882
Org Lett. 2010 Oct 15;12(20):4652-4
pubmed: 20843016
Mutat Res. 2011 May 10;709-710:60-6
pubmed: 21392513
J Cheminform. 2011 Apr 28;3(1):12
pubmed: 21527034
Mar Drugs. 2012 Dec 27;11(1):33-9
pubmed: 23271423
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1096-101
pubmed: 24368691
Angew Chem Int Ed Engl. 2014 May 5;53(19):4840-4
pubmed: 24706593
J Chem Inf Model. 2014 Jul 28;54(7):1951-62
pubmed: 24850022
Mar Drugs. 2014 Dec 29;13(1):128-40
pubmed: 25551780
Nat Prod Rep. 2016 Mar;33(3):382-431
pubmed: 26837534
Biochim Biophys Acta. 2016 Oct;1860(10):2097-106
pubmed: 27373684
Nat Prod Rep. 2017 Mar 17;34(3):235-294
pubmed: 28290569
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5601-5606
pubmed: 28461474
ACS Synth Biol. 2018 Feb 16;7(2):357-362
pubmed: 29249153
Nat Prod Rep. 2018 Jan 25;35(1):8-53
pubmed: 29335692
Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):1718-1723
pubmed: 29439203
J Antibiot (Tokyo). 1972 May;25(5):271-80
pubmed: 4625358