Machine learning for predicting psychotic relapse at 2 years in schizophrenia in the national FACE-SZ cohort.


Journal

Progress in neuro-psychopharmacology & biological psychiatry
ISSN: 1878-4216
Titre abrégé: Prog Neuropsychopharmacol Biol Psychiatry
Pays: England
ID NLM: 8211617

Informations de publication

Date de publication:
08 06 2019
Historique:
received: 15 10 2018
revised: 27 11 2018
accepted: 10 12 2018
pubmed: 16 12 2018
medline: 30 6 2019
entrez: 16 12 2018
Statut: ppublish

Résumé

Predicting psychotic relapse is one of the major challenges in the daily care of schizophrenia. To determine the predictors of psychotic relapse and follow-up withdrawal in a non-selected national sample of stabilized community-dwelling SZ subjects with a machine learning approach. Participants were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and received a thorough clinical and cognitive assessment, including recording of current treatment. Relapse was defined by at least one acute psychotic episode of at least 7 days, reported by the patient, her/his relatives or by the treating psychiatrist, within the 2-year follow-up. A classification and regression tree (CART) was used to construct a predictive decision tree of relapse and follow-up withdrawal. Overall, 549 patients were evaluated in the expert centers at baseline and 315 (57.4%) (mean age = 32.6 years, 24% female gender) were followed-up at 2 years. On the 315 patients who received a visit at 2 years, 125(39.7%) patients had experienced psychotic relapse at least once within the 2 years of follow-up. High anger (Buss&Perry subscore), high physical aggressiveness (Buss&Perry scale subscore), high lifetime number of hospitalization in psychiatry, low education level, and high positive symptomatology at baseline (PANSS positive subscore) were found to be the best predictors of relapse at 2 years, with a percentage of correct prediction of 63.8%, sensitivity 71.0% and specificity 44.8%. High PANSS excited score, illness duration <2 years, low Buss&Perry hostility score, high CTQ score, low premorbid IQ and low medication adherence (BARS) score were found to be the best predictors of follow-up withdrawal with a percentage of correct prediction of 52.4%, sensitivity 62%, specificity 38.7%. Machine learning can help constructing predictive score. In the present sample, aggressiveness appears to be a good early warning sign of psychotic relapse and follow-up withdrawal and should be systematically assessed in SZ subjects. The other above-mentioned clinical variables may help clinicians to improve the prediction of psychotic relapse at 2 years.

Sections du résumé

BACKGROUND
Predicting psychotic relapse is one of the major challenges in the daily care of schizophrenia.
OBJECTIVES
To determine the predictors of psychotic relapse and follow-up withdrawal in a non-selected national sample of stabilized community-dwelling SZ subjects with a machine learning approach.
METHODS
Participants were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and received a thorough clinical and cognitive assessment, including recording of current treatment. Relapse was defined by at least one acute psychotic episode of at least 7 days, reported by the patient, her/his relatives or by the treating psychiatrist, within the 2-year follow-up. A classification and regression tree (CART) was used to construct a predictive decision tree of relapse and follow-up withdrawal.
RESULTS
Overall, 549 patients were evaluated in the expert centers at baseline and 315 (57.4%) (mean age = 32.6 years, 24% female gender) were followed-up at 2 years. On the 315 patients who received a visit at 2 years, 125(39.7%) patients had experienced psychotic relapse at least once within the 2 years of follow-up. High anger (Buss&Perry subscore), high physical aggressiveness (Buss&Perry scale subscore), high lifetime number of hospitalization in psychiatry, low education level, and high positive symptomatology at baseline (PANSS positive subscore) were found to be the best predictors of relapse at 2 years, with a percentage of correct prediction of 63.8%, sensitivity 71.0% and specificity 44.8%. High PANSS excited score, illness duration <2 years, low Buss&Perry hostility score, high CTQ score, low premorbid IQ and low medication adherence (BARS) score were found to be the best predictors of follow-up withdrawal with a percentage of correct prediction of 52.4%, sensitivity 62%, specificity 38.7%.
CONCLUSION
Machine learning can help constructing predictive score. In the present sample, aggressiveness appears to be a good early warning sign of psychotic relapse and follow-up withdrawal and should be systematically assessed in SZ subjects. The other above-mentioned clinical variables may help clinicians to improve the prediction of psychotic relapse at 2 years.

Identifiants

pubmed: 30552914
pii: S0278-5846(18)30805-4
doi: 10.1016/j.pnpbp.2018.12.005
pii:
doi:

Types de publication

Journal Article Multicenter Study Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8-18

Informations de copyright

Copyright © 2018 Elsevier Inc. All rights reserved.

Auteurs

G Fond (G)

Fondation FondaMental, Créteil, France; Faculté de Médecine - Secteur Timone, Aix-Marseille Univ, d'Etude et de Recherche sur les Services de Santé et la Qualité de vie, 27 Boulevard Jean Moulin, 13005 Marseille, France. Electronic address: guillaume.fond@ap-hm.fr.

E Bulzacka (E)

Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France.

M Boucekine (M)

Faculté de Médecine - Secteur Timone, Aix-Marseille Univ, d'Etude et de Recherche sur les Services de Santé et la Qualité de vie, 27 Boulevard Jean Moulin, 13005 Marseille, France.

F Schürhoff (F)

Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France.

F Berna (F)

Fondation FondaMental, Créteil, France; Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France.

O Godin (O)

Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France.

B Aouizerate (B)

Fondation FondaMental, Créteil, France; Centre Hospitalier Charles Perrens, Université de Bordeaux, Bordeaux F-33076, France; INRA, NutriNeuro, University of Bordeaux, U1286, Bordeaux F-33076, France.

D Capdevielle (D)

Fondation FondaMental, Créteil, France; Hôpital la Colombière, CHRU Montpellier, Service Universitaire de Psychiatrie Adulte, Université Montpellier 1, Montpellier 1061, France.

I Chereau (I)

Fondation FondaMental, Créteil, France; Faculté de Médecine, Université d'Auvergne, CMP B, CHU, EA 7280, Clermont-Ferrand Cedex 69 63003, France.

T D'Amato (T)

Fondation FondaMental, Créteil, France; Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, Bron Cedex 69678, France.

C Dubertret (C)

Fondation FondaMental, Créteil, France; AP-HP, Department of Psychiatry, Faculté de médecine, Louis Mourier Hospital, Université Paris Diderot, Colombes U894, France.

J Dubreucq (J)

Fondation FondaMental, Créteil, France; Centre Référent de Réhabilitation Psychosociale, Alpes Isère, Grenoble, France.

C Faget (C)

Fondation FondaMental, Créteil, France; Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France.

S Leignier (S)

Fondation FondaMental, Créteil, France; Centre Référent de Réhabilitation Psychosociale, Alpes Isère, Grenoble, France.

C Lançon (C)

Fondation FondaMental, Créteil, France; Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France.

J Mallet (J)

Fondation FondaMental, Créteil, France; AP-HP, Department of Psychiatry, Faculté de médecine, Louis Mourier Hospital, Université Paris Diderot, Colombes U894, France.

D Misdrahi (D)

Fondation FondaMental, Créteil, France; Centre Hospitalier Charles Perrens, Université de Bordeaux, Bordeaux F-33076, France; CNRS UMR 5287-INCIA, France.

C Passerieux (C)

Fondation FondaMental, Créteil, France; Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France.

R Rey (R)

Fondation FondaMental, Créteil, France; Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, Bron Cedex 69678, France.

A Schandrin (A)

Fondation FondaMental, Créteil, France; Hôpital la Colombière, CHRU Montpellier, Service Universitaire de Psychiatrie Adulte, Université Montpellier 1, Montpellier 1061, France.

M Urbach (M)

Fondation FondaMental, Créteil, France; Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France.

P Vidailhet (P)

Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France.

M Leboyer (M)

Fondation FondaMental, Créteil, France; INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, Créteil, France.

L Boyer (L)

Fondation FondaMental, Créteil, France; Faculté de Médecine - Secteur Timone, Aix-Marseille Univ, d'Etude et de Recherche sur les Services de Santé et la Qualité de vie, 27 Boulevard Jean Moulin, 13005 Marseille, France.

P M Llorca (PM)

Fondation FondaMental, Créteil, France; Faculté de Médecine, Université d'Auvergne, CMP B, CHU, EA 7280, Clermont-Ferrand Cedex 69 63003, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH