Variation of degree of stenosis quantification using different energy level with dual energy CT scanner.
CT
Carotid artery
Dual energy CT
Journal
Neuroradiology
ISSN: 1432-1920
Titre abrégé: Neuroradiology
Pays: Germany
ID NLM: 1302751
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
13
08
2018
accepted:
20
11
2018
pubmed:
17
12
2018
medline:
9
4
2019
entrez:
17
12
2018
Statut:
ppublish
Résumé
To investigate the variation in the quantification of the carotid degree of stenosis (DoS) with a dual energy computed tomography (CT), using different energy levels during the image reconstruction. In this retrospective study, 53 subjects (37 males; mean age 67 ± 11 years; age range 47-83 years) studied with a multi-energy CT scanner were included. Datasets were reconstructed on a dedicated workstation and from the CT raw data multiple datasets were generated at the following monochromatic energy levels: 66, 70, 77, and 86 kilo-electronvolt (keV). Two radiologists independently performed all measurements for quantification of the degree of stenosis. Wilcoxon test was used to test the differences between the Hounsifield unit (HU) values in the plaques at different keV. The Wilcoxon analysis showed a statistically significant difference (p = 0.001) in the DoS assessment among the different keVs selected. The Bland-Altman analysis showed that the DoS difference had a linear relation with the keV difference (the bigger is the difference in keV, the bigger is the variation in DoS) and that for different keVs, the difference in DoS is reduced with its increase. A standardization in the use of the energy level during the image reconstruction should be considered.
Identifiants
pubmed: 30554271
doi: 10.1007/s00234-018-2142-x
pii: 10.1007/s00234-018-2142-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
285-291Références
AJR Am J Roentgenol. 2008 Jan;190(1):W41-6
pubmed: 18094271
AJNR Am J Neuroradiol. 2009 Aug;30(7):1445-50
pubmed: 19299487
Eur J Radiol. 2010 Oct;76(1):42-7
pubmed: 19464837
Eur Radiol. 2011 Aug;21(8):1677-86
pubmed: 21365195
AJNR Am J Neuroradiol. 2011 Dec;32(11):1994-9
pubmed: 21903909
Eur Radiol. 2013 Feb;23(2):367-74
pubmed: 22907636
AJNR Am J Neuroradiol. 2013 Apr;34(4):855-9
pubmed: 23042919
Neuroradiology. 2013 Mar;55(4):423-30
pubmed: 23223824
Radiology. 2014 May;271(2):327-42
pubmed: 24761954
Eur Radiol. 2015 May;25(5):1238-46
pubmed: 25537980
Neuroradiology. 2015 Sep;57(9):889-95
pubmed: 25981057
J Cardiovasc Comput Tomogr. 2016 Mar-Apr;10(2):135-40
pubmed: 26754621
Eur J Radiol. 2016 Apr;85(4):720-5
pubmed: 26971414
Radiographics. 2016 Jul-Aug;36(4):1215-32
pubmed: 27399244
Eur Radiol. 2018 Mar;28(3):1102-1110
pubmed: 29018958
AJNR Am J Neuroradiol. 2018 Feb;39(2):E9-E31
pubmed: 29326139
Eur J Radiol. 2018 Feb;99:111-117
pubmed: 29362140
J Comput Assist Tomogr. 2018 Mar/Apr;42(2):222-229
pubmed: 29489589
Br J Radiol. 2018 Jun;91(1086):20170927
pubmed: 29493282
Eur J Radiol. 2018 Mar;100:36-42
pubmed: 29496077
Eur J Radiol. 2018 May;102:102-108
pubmed: 29685522
AJR Am J Roentgenol. 1997 Aug;169(2):569-73
pubmed: 9242779