Oxidative stress, autophagy and pyroptosis in the neovascularization of oxygen‑induced retinopathy in mice.
Animals
Autophagosomes
/ metabolism
Autophagy
/ physiology
Caspase 1
/ metabolism
Disease Models, Animal
Female
Hypoxia-Inducible Factor 1, alpha Subunit
/ metabolism
Mice
Mice, Inbred C57BL
NADPH Oxidase 1
/ metabolism
NADPH Oxidase 4
/ metabolism
Neovascularization, Pathologic
/ metabolism
Oxidative Stress
/ physiology
Oxygen
/ metabolism
Pyroptosis
/ physiology
Reactive Oxygen Species
/ metabolism
Retina
/ metabolism
Retinal Neovascularization
/ metabolism
Retinopathy of Prematurity
/ metabolism
Vascular Endothelial Growth Factor A
/ metabolism
retinal neovascularization
oxidative stress
autophagy
pyroptosis
Journal
Molecular medicine reports
ISSN: 1791-3004
Titre abrégé: Mol Med Rep
Pays: Greece
ID NLM: 101475259
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
07
05
2018
accepted:
08
11
2018
pubmed:
21
12
2018
medline:
29
5
2019
entrez:
21
12
2018
Statut:
ppublish
Résumé
Retinal neovascularization (RNV) is a principal cause of visual impairment and blindness worldwide. The present study aimed to investigate how oxidative stress, autophagy and pyroptosis alter in RNV. The oxygen‑induced retinopathy (OIR) model was established in C57BL/6J mice by exposing them to a high concentration of oxygen. RNV was clearly visible in the fundus images and was qualitatively analyzed by counting the number of neovascular endothelial cell nuclei at postnatal day 17. Subsequently, the expression of vascular endothelial growth factor (VEGF)‑A and hypoxia‑inducible factor‑1α (HIF‑1α) at the protein level were measured. Furthermore, oxidative stress was examined using dihydroethidium (DHE) staining, and NADPH oxidase (NOX) 1 and 4 in the retinas were detected using reverse transcription‑quantitative polymerase chain reaction analysis. Additionally, immunostaining of microtubule associated protein 1 light chain 3α (LC3) was performed and the expression levels of the LC3, p62, autophagy protein (Atg)5, Atg7, Atg12, Beclin1, NOD‑like receptor family pyrin domain‑containing 3 (NLRP3), caspase‑1, interleukin (IL)‑1β, pro‑caspase‑1 and pro‑IL‑1β proteins were determined using western blotting in order to detect pyroptosis and autophagic flux. Autophagosomes were also detected using transmission electron microscopy. The results revealed that VEGF‑A and HIF‑1α protein expression levels, the DHE‑positive area, and NOX1 and NOX4 mRNA expression levels were significantly increased in the OIR mice. Furthermore, increased levels of NLRP3, caspase‑1, IL‑1β, pro‑caspase‑1 and pro‑IL‑1β proteins demonstrated that pyroptosis was activated. However, an accumulation of p62 and a reduction in the levels of LC3II/I and autophagosomes indicated that autophagic flux was compromised. Therefore, elevated levels of reactive oxygen species and pyroptosis along with attenuated autophagy were demonstrated in the OIR mice. The combination of oxidative stress, pyroptosis and impaired autophagy may serve an important role in the pathophysiology of RNV and may be a potential target to prevent RNV.
Identifiants
pubmed: 30569132
doi: 10.3892/mmr.2018.9759
pmc: PMC6323229
doi:
Substances chimiques
Hypoxia-Inducible Factor 1, alpha Subunit
0
Reactive Oxygen Species
0
Vascular Endothelial Growth Factor A
0
NADPH Oxidase 1
EC 1.6.3.-
NADPH Oxidase 4
EC 1.6.3.-
Caspase 1
EC 3.4.22.36
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
927-934Commentaires et corrections
Type : ErratumIn
Références
Oncotarget. 2015 May 10;6(13):10893-907
pubmed: 25843954
Mol Vis. 2010 Feb 23;16:283-93
pubmed: 20177432
Nature. 2000 Nov 9;408(6809):239-47
pubmed: 11089981
Invest Ophthalmol Vis Sci. 2016 Aug 1;57(10):4356-66
pubmed: 27564518
Pediatrics. 2005 May;115(5):e518-25
pubmed: 15805336
Int J Nanomedicine. 2016 Oct 11;11:5257-5276
pubmed: 27785026
Nat Immunol. 2010 Feb;11(2):136-40
pubmed: 20023662
J Biol Chem. 2002 Sep 6;277(36):33284-90
pubmed: 12068011
Cell Mol Neurobiol. 2015 Jul;35(5):615-21
pubmed: 25722131
Antioxid Redox Signal. 2014 Jun 10;20(17):2726-40
pubmed: 24053718
Autophagy. 2013 Jul;9(7):973-84
pubmed: 23590900
Immunol Rev. 2017 May;277(1):61-75
pubmed: 28462526
J Neurochem. 2012 Mar;120(5):818-29
pubmed: 22168912
Front Physiol. 2018 Jul 26;9:1008
pubmed: 30093867
Oncotarget. 2015 Dec 29;6(42):44161-78
pubmed: 26683708
Retina. 2005 Feb-Mar;25(2):111-8
pubmed: 15689799
Clin Perinatol. 2013 Jun;40(2):185-200
pubmed: 23719304
Annu Rev Cell Dev Biol. 2011;27:563-84
pubmed: 21756109
Cell Biochem Funct. 2013 Aug;31(6):451-9
pubmed: 23760768
Cytokine. 2011 Nov;56(2):140-4
pubmed: 21889357
Semin Cell Dev Biol. 2005 Aug-Oct;16(4-5):474-86
pubmed: 15905109
Redox Biol. 2015;4:208-14
pubmed: 25613291
PLoS Biol. 2010 Jun 29;8(6):e1000412
pubmed: 20613859
Br J Dermatol. 2010 Aug;163(2):257-68
pubmed: 20394633
Sci Rep. 2016 Feb 05;6:20639
pubmed: 26847702
Autophagy. 2016;12(1):1-222
pubmed: 26799652
Autophagy. 2010 Oct;6(7):999-1005
pubmed: 20639698
Int J Mol Sci. 2016 Jan 08;17(1):
pubmed: 26760997
Curr Biol. 2016 Jul 11;26(13):R568-R572
pubmed: 27404251
Science. 2011 Aug 26;333(6046):1109-12
pubmed: 21868666
Kaohsiung J Med Sci. 2015 Jun;31(6):279-86
pubmed: 26043406
Mol Biol Cell. 1999 May;10(5):1463-75
pubmed: 10233156
Free Radic Res. 2011 Mar;45(3):253-65
pubmed: 20964552
Diabetes. 2010 Jun;59(6):1528-38
pubmed: 20332345
Biomed Res Int. 2014;2014:768026
pubmed: 24707498
Int J Radiat Oncol Biol Phys. 2018 May 1;101(1):107-117
pubmed: 29456024
Autophagy. 2014;10(11):1989-2005
pubmed: 25484094
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Blood. 2014 Jan 30;123(5):625-31
pubmed: 24300855
Free Radic Biol Med. 2014 Jun;71:196-207
pubmed: 24681256
Immunol Rev. 2011 Sep;243(1):206-14
pubmed: 21884178
Int J Retina Vitreous. 2017 Aug 21;3:31
pubmed: 28835854
Mediators Inflamm. 2015;2015:398483
pubmed: 26221063
Am J Pathol. 2005 Aug;167(2):599-607
pubmed: 16049343
Prog Retin Eye Res. 2010 Nov;29(6):500-19
pubmed: 20488255