Reboxetine and hyoscine butylbromide improve upper airway function during nonrapid eye movement and suppress rapid eye movement sleep in healthy individuals.


Journal

Sleep
ISSN: 1550-9109
Titre abrégé: Sleep
Pays: United States
ID NLM: 7809084

Informations de publication

Date de publication:
01 04 2019
Historique:
received: 29 07 2018
revised: 26 11 2018
pubmed: 28 12 2018
medline: 9 4 2020
entrez: 28 12 2018
Statut: ppublish

Résumé

Recent findings indicate that noradrenergic and antimuscarinic processes are crucial for sleep-related reductions in pharyngeal muscle activity. However, there are few human studies. Accordingly, this study aimed to determine if a combined noradrenergic and antimuscarinic intervention increases pharyngeal dilator muscle activity and improves airway function in sleeping humans. Genioglossus (GG) and tensor palatini electromyography (EMG), pharyngeal pressure, upper airway resistance, and breathing parameters were acquired in 10 healthy adults (5 female) during two overnight sleep studies after 4 mg of reboxetine (REB) plus 20 mg of hyoscine butylbromide (HBB) or placebo using a double-blind, placebo-controlled, randomized, cross-over design. Compared with placebo, peak and tonic GG EMG were lower (Mean ± SD: 83 ± 73 vs. 130 ± 75, p = 0.021 and 102 ± 102 vs. 147 ± 123 % wakefulness, p = 0.021, respectively) but the sleep-related reduction in tensor palatini was less (Median [25th, 75th centiles]: 53[45, 62] vs. 34[28, 38] % wakefulness, p = 0.008) with the drug combination during nonrapid eye movement (non-REM) sleep. These changes were accompanied by improved upper airway function including reduced pharyngeal pressure swings, airway resistance, respiratory load compensation, and increased breathing frequency during N2. REB and HBB significantly reduced rapid eye movement sleep compared with placebo (0.6 ± 1.1 vs. 14.5 ± 6.8 % total sleep time, p < 0.001). Contrary to our hypothesis, GG muscle activity (% wakefulness) during non-REM sleep was lower with REB and HBB. However, sleep-related reductions in tensor palatini activity were less and upper airway function improved. These findings provide mechanistic insight into the role of noradrenergic and antimuscarinic processes on upper airway function in humans and have therapeutic potential for obstructive sleep apnea. Australian New Zealand Clinical Trials Registry, https://www.anzctr.org.au, trial ID: ACTRN12616000469415.

Identifiants

pubmed: 30590857
pii: 5262413
doi: 10.1093/sleep/zsy261
pmc: PMC8453808
pii:
doi:

Substances chimiques

Parasympatholytics 0
Butylscopolammonium Bromide 2Z3E1OF81V
Reboxetine 947S0YZ36I
Scopolamine DL48G20X8X

Banques de données

ANZCTR
['ACTRN12616000469415']

Types de publication

Journal Article Randomized Controlled Trial Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NHLBI NIH HHS
ID : P01 HL095491
Pays : United States

Informations de copyright

© Sleep Research Society 2018. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

Références

J Appl Physiol (1985). 2014 Feb 1;116(3):302-13
pubmed: 23990246
J Affect Disord. 2015 Jul 15;180:179-84
pubmed: 25911132
Eur Respir J. 2007 Aug;30(2):345-53
pubmed: 17459896
Sleep Med Rev. 2012 Apr;16(2):187-97
pubmed: 22296742
J Physiol. 2005 Apr 15;564(Pt 2):549-62
pubmed: 15695240
Sleep. 2011 Nov 01;34(11):1479-86
pubmed: 22043118
N Engl J Med. 2014 Jan 9;370(2):139-49
pubmed: 24401051
Neuropharmacology. 2004 May;46(6):815-23
pubmed: 15033341
Respir Physiol Neurobiol. 2013 Sep 15;188(3):362-9
pubmed: 23797183
Nat Neurosci. 2009 Apr;12(4):396-7
pubmed: 18836440
J Physiol. 2003 Aug 1;550(Pt 3):899-910
pubmed: 12807995
Neuropharmacology. 2012 Jun;62(7):2354-62
pubmed: 22369787
Respirology. 2017 Jul;22(5):861-873
pubmed: 28544082
Sleep. 2012 May 01;35(5):699-707
pubmed: 22547896
J Appl Physiol (1985). 1998 Sep;85(3):908-20
pubmed: 9729564
Respir Physiol. 1991 Feb;83(2):189-200
pubmed: 2068416
Biol Psychiatry. 1991 Jul 15;30(2):157-69
pubmed: 1655072
Proc Am Thorac Soc. 2008 Feb 15;5(2):173-8
pubmed: 18250209
J Appl Physiol (1985). 1991 Jun;70(6):2574-81
pubmed: 1885452
Sleep. 2008 Apr;31(4):525-33
pubmed: 18457240
J Clin Sleep Med. 2012 Oct 15;8(5):597-619
pubmed: 23066376
Indian J Physiol Pharmacol. 1998 Jul;42(3):395-400
pubmed: 9741655
J Appl Physiol (1985). 2018 Feb 1;124(2):421-429
pubmed: 29191983
Am J Respir Crit Care Med. 2013 Oct 15;188(8):996-1004
pubmed: 23721582
J Clin Sleep Med. 2015 Sep 15;11(9):1029-38
pubmed: 25902824
Am J Respir Crit Care Med. 2006 Dec 1;174(11):1264-73
pubmed: 16931636
Chest. 2018 Mar;153(3):744-755
pubmed: 28629917
CNS Drug Rev. 2004 Spring;10(1):23-44
pubmed: 14978512
Am J Respir Crit Care Med. 2011 May 1;183(9):1280
pubmed: 21531956
PLoS One. 2017 Jun 13;12(6):e0179030
pubmed: 28609480
Biol Psychiatry. 2000 May 1;47(9):818-29
pubmed: 10812041
Am J Respir Crit Care Med. 2016 Oct 1;194(7):878-885
pubmed: 26967681
Am J Respir Crit Care Med. 2017 Jun 15;195(12):1677-1678
pubmed: 28186828
Chron Respir Dis. 2013 Feb;10(1):29-33
pubmed: 23355403
J Physiol. 2001 Apr 15;532(Pt 2):467-81
pubmed: 11306665
J Sleep Res. 2011 Dec;20(4):544-51
pubmed: 21352389
Clin Pharmacol Ther. 1969 Jul-Aug;10(4):522-9
pubmed: 4307415
Am J Respir Crit Care Med. 2013 Feb 1;187(3):311-9
pubmed: 23220910
Science. 1994 Jul 29;265(5172):679-82
pubmed: 8036518
Sleep Breath. 2012 Jun;16(2):563-9
pubmed: 21667216
J Appl Physiol (1985). 2015 Jun 15;118(12):1516-24
pubmed: 25814639
Pharmacol Biochem Behav. 2007 Mar;86(3):468-76
pubmed: 17303232
Am J Respir Crit Care Med. 2018 Mar 1;197(5):653-660
pubmed: 29112823
Sleep Breath. 2012 Jun;16(2):519-26
pubmed: 21614575
Drugs. 2007;67(9):1343-57
pubmed: 17547475
J Appl Physiol (1985). 2015 May 15;118(10):1221-8
pubmed: 25749447
Lancet. 2014 Feb 22;383(9918):736-47
pubmed: 23910433
Am J Respir Crit Care Med. 2005 Nov 15;172(10):1322-30
pubmed: 16100007
Eur Respir J. 2016 Nov;48(5):1340-1350
pubmed: 27799387
Learn Mem. 2004 Nov-Dec;11(6):714-9
pubmed: 15576889
Proc Am Thorac Soc. 2008 Feb 15;5(2):200-6
pubmed: 18250213
Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):1058-62
pubmed: 10988130
Am J Respir Crit Care Med. 2017 Jun 15;195(12):1678-1679
pubmed: 28186830

Auteurs

Richard Lim (R)

Neuroscience Research Australia (NeuRA), Sydney, Australia.
School of Medical Sciences, University of New South Wales, Sydney, Australia.

Jayne C Carberry (JC)

Neuroscience Research Australia (NeuRA), Sydney, Australia.
School of Medical Sciences, University of New South Wales, Sydney, Australia.

Andrew Wellman (A)

Division of Sleep Medicine, Brigham and Women's Hospital, Boston, MA.
Harvard Medical School, Boston, MA.

Ron Grunstein (R)

Woolcock Institute of Medical Research, Sydney, Australia.
Sydney Medical School, University of Sydney, Sydney, Australia.

Danny J Eckert (DJ)

Neuroscience Research Australia (NeuRA), Sydney, Australia.
School of Medical Sciences, University of New South Wales, Sydney, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH