Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity.
Adolescent
Adult
Brain Mapping
/ methods
Corpus Striatum
/ drug effects
Cross-Over Studies
Double-Blind Method
Executive Function
/ physiology
Female
Humans
Magnetic Resonance Imaging
/ methods
Male
Nerve Net
/ diagnostic imaging
Prefrontal Cortex
/ diagnostic imaging
Sex Characteristics
Smokers
/ psychology
Tobacco Smoking
/ pathology
Young Adult
Connectivity
Executive control network
Nicotine
Sex differences
Smoking
fMRI
Journal
Drug and alcohol dependence
ISSN: 1879-0046
Titre abrégé: Drug Alcohol Depend
Pays: Ireland
ID NLM: 7513587
Informations de publication
Date de publication:
01 02 2019
01 02 2019
Historique:
received:
16
06
2018
revised:
19
11
2018
accepted:
19
11
2018
pubmed:
29
12
2018
medline:
27
6
2019
entrez:
29
12
2018
Statut:
ppublish
Résumé
Women experience greater difficulty quitting smoking than men, which may be explained by sex differences in brain circuitry underlying cognitive control. Prior work has linked reduced interhemispheric executive control network (ECN) coupling with poor executive function, shorter time to relapse, and greater substance use. Lower structural connectivity between a key ECN hub, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum (DS) also contributes to less efficient cognitive control recruitment, and reduced intrahemispheric connectivity between these regions has been associated with smoking relapse. Therefore, sex differences were probed by evaluating interhemispheric ECN and intrahemispheric DLPFC-DS connectivity. To assess the potential sex by nicotine interaction, a pilot sample of non-smokers was evaluated following acute nicotine and placebo administration. Thirty-five smokers (19 women) completed one resting state functional magnetic resonance imaging scan. Seventeen non-smokers (8 women) were scanned twice using a repeated measures design where they received 2 and 0 mg nicotine. In smokers, women had less interhemispheric ECN and DLPFC-DS coupling than men. In non-smokers, there was a drug x sex interaction where women, relative to men, had weaker ECN coupling following nicotine but not placebo administration. The current work indicates that nicotine-dependent women, versus men, have weaker connectivity in brain networks critically implicated in cognitive control. How these connectivity differences contribute to the behavioral aspects of smoking requires more testing. However, building on the literature, it is likely these deficits in functional connectivity contribute to the lower abstinence rates noted in women relative to men.
Sections du résumé
BACKGROUND
Women experience greater difficulty quitting smoking than men, which may be explained by sex differences in brain circuitry underlying cognitive control. Prior work has linked reduced interhemispheric executive control network (ECN) coupling with poor executive function, shorter time to relapse, and greater substance use. Lower structural connectivity between a key ECN hub, the dorsolateral prefrontal cortex (DLPFC), and the dorsal striatum (DS) also contributes to less efficient cognitive control recruitment, and reduced intrahemispheric connectivity between these regions has been associated with smoking relapse. Therefore, sex differences were probed by evaluating interhemispheric ECN and intrahemispheric DLPFC-DS connectivity. To assess the potential sex by nicotine interaction, a pilot sample of non-smokers was evaluated following acute nicotine and placebo administration.
METHODS
Thirty-five smokers (19 women) completed one resting state functional magnetic resonance imaging scan. Seventeen non-smokers (8 women) were scanned twice using a repeated measures design where they received 2 and 0 mg nicotine.
RESULTS
In smokers, women had less interhemispheric ECN and DLPFC-DS coupling than men. In non-smokers, there was a drug x sex interaction where women, relative to men, had weaker ECN coupling following nicotine but not placebo administration.
CONCLUSIONS
The current work indicates that nicotine-dependent women, versus men, have weaker connectivity in brain networks critically implicated in cognitive control. How these connectivity differences contribute to the behavioral aspects of smoking requires more testing. However, building on the literature, it is likely these deficits in functional connectivity contribute to the lower abstinence rates noted in women relative to men.
Identifiants
pubmed: 30592997
pii: S0376-8716(18)30839-1
doi: 10.1016/j.drugalcdep.2018.11.023
pmc: PMC6625360
mid: NIHMS1034122
pii:
doi:
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
59-65Subventions
Organisme : NIDA NIH HHS
ID : K01 DA029645
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA039135
Pays : United States
Organisme : NIDA NIH HHS
ID : T32 DA015036
Pays : United States
Organisme : NIDA NIH HHS
ID : K02 DA042987
Pays : United States
Organisme : NIMH NIH HHS
ID : K23 MH110564
Pays : United States
Organisme : NIMH NIH HHS
ID : R37 MH068376
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier B.V. All rights reserved.
Références
Science. 2000 Jun 9;288(5472):1835-8
pubmed: 10846167
Nicotine Tob Res. 2001 Feb;3(1):7-16
pubmed: 11260806
Med Image Anal. 2001 Jun;5(2):143-56
pubmed: 11516708
Trends Cogn Sci. 2003 Sep;7(9):415-423
pubmed: 12963473
Nicotine Tob Res. 2003 Oct;5(5):635-44
pubmed: 14577980
Addiction. 2004 Jan;99(1):29-38
pubmed: 14678060
Addiction. 2004 Nov;99(11):1462-9
pubmed: 15500599
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):781-95
pubmed: 15937012
Cereb Cortex. 2006 Apr;16(4):553-60
pubmed: 16033925
Clin Pharmacol Ther. 2006 May;79(5):480-8
pubmed: 16678549
J Neurosci. 2006 Aug 23;26(34):8707-14
pubmed: 16928859
Exp Clin Psychopharmacol. 2007 Feb;15(1):21-36
pubmed: 17295582
J Neurosci. 2007 Feb 28;27(9):2349-56
pubmed: 17329432
Cereb Cortex. 2008 Dec;18(12):2735-47
pubmed: 18400794
Nicotine Tob Res. 2008 Jul;10(7):1245-50
pubmed: 18629735
Neuroimage. 2009 Apr 1;45(2):549-61
pubmed: 19159693
Br J Addict. 1991 Sep;86(9):1119-27
pubmed: 1932883
Biochem Pharmacol. 2009 Oct 1;78(7):756-65
pubmed: 19540212
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
pubmed: 19620724
Psychoneuroendocrinology. 2011 Jan;36(1):123-32
pubmed: 20675057
Psychopharmacology (Berl). 2010 Dec;212(4):537-49
pubmed: 20703450
Psychol Addict Behav. 2010 Sep;24(3):446-52
pubmed: 20853930
Behav Pharmacol. 2010 Dec;21(8):754-64
pubmed: 20944502
J Neurosci. 2010 Nov 10;30(45):15034-43
pubmed: 21068309
Neuroimage. 2011 Jun 15;56(4):2258-75
pubmed: 21440645
Neuroimage. 2012 Mar;60(1):117-29
pubmed: 22197743
Arch Gen Psychiatry. 2012 Apr;69(4):418-27
pubmed: 22474108
Cereb Cortex. 2013 Sep;23(9):2086-99
pubmed: 22819968
J Neurophysiol. 2012 Oct;108(8):2242-63
pubmed: 22832566
Neurosci Biobehav Rev. 2013 Nov;37(9 Pt A):1946-54
pubmed: 23438892
Behav Neurosci. 2013 Apr;127(2):303-10
pubmed: 23565938
Cereb Cortex. 2014 Nov;24(11):2981-90
pubmed: 23765157
J Cogn Neurosci. 1997 Nov;9(6):835-47
pubmed: 23964603
Neuroimage. 2014 Apr 15;90:24-32
pubmed: 24365676
Addict Behav. 2014 Apr;39(4):789-92
pubmed: 24525300
Hum Brain Mapp. 2014 Sep;35(9):4415-27
pubmed: 24532023
Addict Behav. 2014 Jul;39(7):1197-204
pubmed: 24746485
Brain Res. 2015 Dec 2;1628(Pt A):117-29
pubmed: 25218611
Hum Brain Mapp. 2015 Mar;36(3):872-82
pubmed: 25346448
Prog Neuropsychopharmacol Biol Psychiatry. 2015 Mar 3;57:76-85
pubmed: 25445475
J Neurosci. 2014 Dec 10;34(50):16851-5
pubmed: 25505336
Neuropsychopharmacology. 2015 Jun;40(7):1561-8
pubmed: 25567427
Neuropsychopharmacology. 2015 Jul;40(8):1940-6
pubmed: 25662839
Psychopharmacology (Berl). 2015 Jul;232(14):2481-9
pubmed: 25716308
J Neurosci. 2015 Mar 4;35(9):3865-78
pubmed: 25740516
Front Hum Neurosci. 2015 Mar 09;9:116
pubmed: 25805986
Exp Clin Psychopharmacol. 2015 Aug;23(4):247-54
pubmed: 26237322
Addict Biol. 2017 May;22(3):813-822
pubmed: 26769234
Hum Brain Mapp. 2016 Jun;37(6):2013-26
pubmed: 26918784
Addict Biol. 2017 Jul;22(4):1057-1067
pubmed: 26969418
Biol Sex Differ. 2016 May 10;7:24
pubmed: 27168932
Neuroscience. 2016 Sep 22;332:149-59
pubmed: 27365175
Sci Rep. 2016 Jul 05;6:29435
pubmed: 27377552
Prev Med. 2016 Nov;92:135-140
pubmed: 27471021
Addict Biol. 2017 Nov;22(6):1790-1801
pubmed: 27600492
MMWR Morb Mortal Wkly Rep. 2016 Nov 11;65(44):1205-1211
pubmed: 27832052
Addict Biol. 2018 Sep;23(5):1046-1054
pubmed: 28940989
Front Psychiatry. 2017 Sep 25;8:182
pubmed: 28993741
Drug Alcohol Depend. 2017 Dec 1;181:1-4
pubmed: 29017089
Psychopharmacology (Berl). 2018 Jan;235(1):193-202
pubmed: 29022071
J Psychiatry Neurosci. 2018 Jan;43(1):48-57
pubmed: 29252165
Neuropsychopharmacology. 2018 Nov;43(12):2445-2451
pubmed: 29795403
Neuroimage. 2018 Dec;183:346-355
pubmed: 30130644
Neuropsychopharmacology. 2018 Nov;43(12):2452-2458
pubmed: 30131564
J Pers Soc Psychol. 1988 Jun;54(6):1063-70
pubmed: 3397865
Addict Behav. 1986;11(4):459-62
pubmed: 3544698
Clin Pharmacol Ther. 1984 Apr;35(4):499-504
pubmed: 6705448
Am J Public Health. 1995 Feb;85(2):223-30
pubmed: 7856782
J Pers Assess. 1996 Dec;67(3):588-97
pubmed: 8991972