Sepsis-related myocardial injury is associated with Mst1 upregulation, mitochondrial dysfunction and the Drp1/F-actin signaling pathway.
Actins
/ metabolism
Cardiomyopathies
/ etiology
Cell Death
Cells, Cultured
Dynamins
GTP Phosphohydrolases
/ metabolism
Hepatocyte Growth Factor
/ metabolism
Humans
Intracellular Signaling Peptides and Proteins
Lipopolysaccharides
/ pharmacology
Microtubule-Associated Proteins
/ metabolism
Mitochondrial Dynamics
Mitochondrial Proteins
/ metabolism
Myocytes, Cardiac
/ pathology
Protein Serine-Threonine Kinases
/ metabolism
Proto-Oncogene Proteins
/ metabolism
Sepsis
/ chemically induced
Signal Transduction
Up-Regulation
F-actin
LPS
Mitochondrial fission
Mst1
Septic cardiomyopathy
Journal
Journal of molecular histology
ISSN: 1567-2387
Titre abrégé: J Mol Histol
Pays: Netherlands
ID NLM: 101193653
Informations de publication
Date de publication:
Apr 2019
Apr 2019
Historique:
received:
25
11
2018
accepted:
18
12
2018
pubmed:
4
1
2019
medline:
30
4
2019
entrez:
4
1
2019
Statut:
ppublish
Résumé
LPS-induced septic cardiomyopathy has been found to be connected with mitochondrial stress through unknown mechanisms. Mitochondrial fission is an early event in mitochondrial dysfunction. The aim of our study was to determine the role and regulatory mechanism of mitochondrial fission in the progression of LPS-induced septic cardiomyopathy, with a particular focus on Mst1 and F-actin. Our data demonstrated that Mst1 expression was rapidly upregulated in LPS-treated hearts and that increased Mst1 promoted cardiomyocyte death by inducing mitochondrial stress. Mechanistically, elevated expression of Mst1 upregulated Drp1, and the latter initiated mitochondrial fission. Excessive mitochondrial fission caused mitochondrial oxidative injury, mitochondrial membrane potential reduction, mitochondrial proapoptotic element translocation into the cytoplasm/nucleus, mitochondrial energy dysfunction and mitochondrial apoptosis activation. Inhibition of mitochondrial fission sustained mitochondrial function and favored cardiomyocyte survival. Furthermore, we identified F-actin degradation as an apparent downstream event of mitochondrial fission activation in the context of LPS-induced septic cardiomyopathy. Stabilization of F-actin attenuated fission-mediated cardiomyocyte death. Altogether, our results define the Mst1/Drp1/mitochondrial fission/F-actin axis as a new signaling pathway that mediates LPS-related septic cardiomyopathy by inducing mitochondrial stress and cardiomyocyte death. Therefore, Mst1 expression, mitochondrial fission modification and F-actin stabilization may serve as potential therapeutic targets for sepsis-related myocardial injury.
Identifiants
pubmed: 30604255
doi: 10.1007/s10735-018-09809-5
pii: 10.1007/s10735-018-09809-5
doi:
Substances chimiques
Actins
0
Intracellular Signaling Peptides and Proteins
0
Lipopolysaccharides
0
Microtubule-Associated Proteins
0
Mitochondrial Proteins
0
Proto-Oncogene Proteins
0
Hepatocyte Growth Factor
67256-21-7
STK4 protein, human
EC 2.7.1.11
Protein Serine-Threonine Kinases
EC 2.7.11.1
GTP Phosphohydrolases
EC 3.6.1.-
DNM1L protein, human
EC 3.6.5.5
Dynamins
EC 3.6.5.5
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
91-103Références
Nat Rev Immunol. 2015 Nov;15(11):667
pubmed: 26494048
Cell Death Dis. 2016 May 26;7:e2234
pubmed: 27228349
J Pineal Res. 2017 Jan;62(1):
pubmed: 27736028
J Pineal Res. 2017 Mar;62(2):
pubmed: 28095626
J Pineal Res. 2017 Apr;62(3):null
pubmed: 28118492
J Pineal Res. 2017 May;62(4):null
pubmed: 28226194
J Am Heart Assoc. 2017 Mar 13;6(3):null
pubmed: 28288978
J Pineal Res. 2017 Aug;63(1):null
pubmed: 28370218
Redox Biol. 2017 Aug;12:540-548
pubmed: 28371751
J Pineal Res. 2017 Aug;63(1):null
pubmed: 28378373
Redox Biol. 2017 Aug;12:821-827
pubmed: 28448943
J Pineal Res. 2017 Sep;63(2):null
pubmed: 28480587
Redox Biol. 2017 Oct;13:1-7
pubmed: 28528123
Redox Biol. 2017 Oct;13:39-59
pubmed: 28570948
J Pineal Res. 2017 Oct;63(3):null
pubmed: 28580641
Redox Biol. 2017 Oct;13:402-406
pubmed: 28667909
Cell Stress Chaperones. 2018 Jan;23(1):101-113
pubmed: 28669047
Basic Res Cardiol. 2017 Sep;112(5):52
pubmed: 28695353
J Pineal Res. 2017 Oct;63(3):null
pubmed: 28708259
Angiogenesis. 2017 Nov;20(4):463-478
pubmed: 28741165
Basic Res Cardiol. 2017 Sep;112(5):54
pubmed: 28756533
Redox Biol. 2017 Oct;13:600-607
pubmed: 28806702
Angiogenesis. 2017 Nov;20(4):615-628
pubmed: 28840375
Basic Res Cardiol. 2017 Sep 1;112(5):57
pubmed: 28864889
Basic Res Cardiol. 2017 Sep 14;112(6):63
pubmed: 28913715
J Cell Mol Med. 2017 Nov;21(11):2643-2653
pubmed: 28941171
Redox Biol. 2018 Apr;14:229-236
pubmed: 28965081
Basic Res Cardiol. 2017 Sep 30;112(6):65
pubmed: 28965130
J Pineal Res. 2018 Jan;64(1):null
pubmed: 28981157
Redox Biol. 2018 Apr;14:261-271
pubmed: 28982073
J Pineal Res. 2018 Jan;64(1):null
pubmed: 29024001
Redox Biol. 2018 Apr;14:328-337
pubmed: 29024896
Basic Res Cardiol. 2017 Oct 17;112(6):66
pubmed: 29043508
Basic Res Cardiol. 2017 Oct 25;112(6):67
pubmed: 29071437
Redox Biol. 2018 Apr;14:474-484
pubmed: 29096320
Basic Res Cardiol. 2017 Nov 3;113(1):1
pubmed: 29101484
Redox Biol. 2018 Apr;14:576-587
pubmed: 29149759
Angiogenesis. 2018 Feb;21(1):79-94
pubmed: 29150732
Basic Res Cardiol. 2017 Nov 20;113(1):3
pubmed: 29159507
Basic Res Cardiol. 2017 Nov 21;113(1):4
pubmed: 29164342
Redox Biol. 2018 Apr;14:637-644
pubmed: 29169115
Redox Biol. 2018 Apr;14:669-678
pubmed: 29175754
Basic Res Cardiol. 2017 Dec 09;113(1):5
pubmed: 29224086
Basic Res Cardiol. 2017 Dec 14;113(1):6
pubmed: 29242986
Basic Res Cardiol. 2017 Dec 22;113(1):7
pubmed: 29273902
Redox Biol. 2018 May;15:335-346
pubmed: 29306791
Cell Signal. 2018 May;45:12-22
pubmed: 29413844
Oncol Rep. 2018 Apr;39(4):1671-1681
pubmed: 29436693
J Pineal Res. 2018 May;64(4):e12474
pubmed: 29437238
Cell Physiol Biochem. 2018;45(3):1172-1190
pubmed: 29448246
Redox Biol. 2018 Jun;16:157-168
pubmed: 29502045
Cell Signal. 2018 Jul;47:88-100
pubmed: 29601906
Angiogenesis. 2018 Aug;21(3):599-615
pubmed: 29623489
Basic Res Cardiol. 2018 May 9;113(4):23
pubmed: 29744594
Cell Mol Biol Lett. 2018 May 8;23:21
pubmed: 29760744
J Physiol Sci. 2019 Jan;69(1):113-127
pubmed: 29961191
Front Physiol. 2018 Jun 15;9:755
pubmed: 29962971
Cell Physiol Biochem. 2018;48(1):304-316
pubmed: 30016782
Redox Biol. 2018 Sep;18:229-243
pubmed: 30056271
Cell Physiol Biochem. 2018;49(5):1856-1869
pubmed: 30231237
J Cell Physiol. 2019 Apr;234(4):5056-5069
pubmed: 30256421
Cell Physiol Biochem. 2018;49(6):2277-2292
pubmed: 30257244
J Mol Histol. 2018 Dec;49(6):599-613
pubmed: 30298449
J Mol Histol. 2018 Dec;49(6):639-649
pubmed: 30317407
Int J Oncol. 2018 Dec;53(6):2409-2422
pubmed: 30320378
J Pineal Res. 2019 Jan;66(1):e12534
pubmed: 30329173
Redox Biol. 2019 Jan;20:261-274
pubmed: 30384260
Redox Biol. 2019 Jan;20:296-306
pubmed: 30388684