3D Printed Modular Immunofiltration Columns for Frequency Mixing-Based Multiplex Magnetic Immunodetection.
3D print
additive manufacturing
frequency mixing magnetic detection
magnetic bead
magnetic sandwich immunoasssay
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
03 Jan 2019
03 Jan 2019
Historique:
received:
30
11
2018
revised:
21
12
2018
accepted:
28
12
2018
entrez:
6
1
2019
pubmed:
6
1
2019
medline:
30
1
2019
Statut:
epublish
Résumé
For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.
Identifiants
pubmed: 30609859
pii: s19010148
doi: 10.3390/s19010148
pmc: PMC6338908
pii:
doi:
Substances chimiques
Antibodies, Immobilized
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Bundesministerium für Bildung und Forschung
ID : 13N13711 and 13N13712
Références
Biosens Bioelectron. 2000;15(11-12):549-78
pubmed: 11213217
Clin Diagn Lab Immunol. 2003 Jul;10(4):506-13
pubmed: 12853377
Biosens Bioelectron. 2004 Mar 15;19(8):945-51
pubmed: 15128114
Biosens Bioelectron. 2007 Jan 15;22(6):973-9
pubmed: 16766177
Nat Med. 2008 Aug;14(8):869-74
pubmed: 18607350
Biosens Bioelectron. 2010 Dec 15;26(4):1178-94
pubmed: 20729060
Nanotechnology. 2010 Nov 12;21(45):455101
pubmed: 20947953
Int J Nanomedicine. 2012;7:4335-40
pubmed: 22915855
Biotechnol Bioeng. 2015 Feb;112(2):308-21
pubmed: 25117428
Appl Environ Microbiol. 2015 May 1;81(9):3039-48
pubmed: 25710366
Biosens Bioelectron. 2016 Nov 15;85:1-7
pubmed: 27148826
Sensors (Basel). 2016 Jun 06;16(6):
pubmed: 27275824
Anal Chem. 2017 Jan 3;89(1):57-70
pubmed: 28105825
Chem Rev. 2017 Aug 9;117(15):10212-10290
pubmed: 28756658
Sensors (Basel). 2017 Oct 10;17(10):
pubmed: 28994727
Science. 2018 Jan 19;359(6373):314-319
pubmed: 29348235
ACS Sens. 2018 Oct 26;3(10):1894-2024
pubmed: 30080029
Micromachines (Basel). 2018 Aug 07;9(8):null
pubmed: 30424327
Biosens Bioelectron. 1998 Oct 1;13(7-8):731-9
pubmed: 9828367