Functional annotation of orthologs in metagenomes: a case study of genes for the transformation of oceanic dimethylsulfoniopropionate.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
05 2019
Historique:
received: 25 07 2018
accepted: 25 12 2018
revised: 22 11 2018
pubmed: 16 1 2019
medline: 28 10 2019
entrez: 16 1 2019
Statut: ppublish

Résumé

Dimethylsulfoniopropionate (DMSP) is produced mainly by phytoplankton and bacteria. It is relatively abundant and ubiquitous in the marine environment, where bacterioplankton make use of it readily as both carbon and sulfur sources. In one transformation pathway, part of the molecule becomes dimethylsulfide (DMS), which escapes into the atmosphere and plays an important role in the sulfur exchange between oceans and atmosphere. Through its other dominant catabolic pathway, bacteria are able to use it as sulfur source. During the past few years, a number of genes involved in its transformation have been characterized. Identifying genes in taxonomic groups not amenable to conventional methods of cultivation is challenging. Indeed, functional annotation of genes in environmental studies is not straightforward, considering that particular taxa are not well represented in the available sequence databases. Furthermore, many genes belong to families of paralogs with similar sequences but perhaps different functions. In this study, we develop in silico approaches to infer protein function of an environmentally important gene (dmdA) that carries out the first step in the sulfur assimilation from DMSP. The method combines a set of tools to annotate a targeted gene in genome databases and metagenome assemblies. The method will be useful to identify genes that carry out key biochemical processes in the environment.

Identifiants

pubmed: 30643200
doi: 10.1038/s41396-019-0347-6
pii: 10.1038/s41396-019-0347-6
pmc: PMC6474240
doi:

Substances chimiques

Sulfonium Compounds 0
Sulfur 70FD1KFU70
dimethylpropiothetin C884XA7QGG

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1183-1197

Références

Malin G, Kirst GO. Algal production of dimethyl sulfide and its atmospheric role. J Phycol. 1997;33:889–96.
doi: 10.1111/j.0022-3646.1997.00889.x
Kettle AJ, Andreae MO. Flux of dimethylsulfide from the oceans: a comparison of updated data seas and flux models. J Geophys Res Atmos. 2000;105:26793–808.
doi: 10.1029/2000JD900252
Bates TS, Charlson RJ, Gammon RH. Evidence for the climatic role of marine biogenic sulphur. Nature. 1987;329:319–21.
doi: 10.1038/329319a0
Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature. 1987;326:655–61.
doi: 10.1038/326655a0
Simó R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol. 2001;16:287–94.
doi: 10.1016/S0169-5347(01)02152-8
Andreae MO. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Mar Chem. 1990;30:1–29.
doi: 10.1016/0304-4203(90)90059-L
Malin G, Turner SM, Liss PS. Sulfur: the plankton/climate connection. J Phycol. 1992;28:590–7.
doi: 10.1111/j.0022-3646.1992.00590.x
Taylor BF, Gilchrist DC. New routes for aerobic biodegradation of dimethylsulfoniopropionate. Appl Environ Microbiol. 1991;57:3581–4.
pubmed: 16348607 pmcid: 184016
Visscher PT, Diaz MR, Taylor BF. Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser. 1992;89:293–6.
doi: 10.3354/meps089293
Taylor BF. Bacterial transformations of organic sulfur compounds in marine environments. In: Oremland RS, editor. Biogeochemistry of global change. Boston, MA: Springer; 1993.p.745–81.
doi: 10.1007/978-1-4615-2812-8_40
Kiene RP. Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar Chem. 1996;54:69–83.
doi: 10.1016/0304-4203(96)00006-0
Kiene RP. Turnover of dissolved DMSP in estuarine and shelf waters of the northern Gulf of Mexico. In: Kiene RP, Visscher PT, Keller MD, Kirst GO, editors. Biological and environmental chemistry of DMSP and related sulfonium compounds. Boston, MA: Springer; 1996. p. 337–49.
doi: 10.1007/978-1-4613-0377-0_29
Kiene RP, Linn LJ, González J, Moran MA, Bruton JA. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol. 1999;65:4549–58.
pubmed: 10508088 pmcid: 91606
Curson ARJ, Todd JD, Sullivan MJ, Johnston AWB. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat Rev Microbiol. 2011;9:849–59.
doi: 10.1038/nrmicro2653
Reisch CR, Moran MA, Whitman WB. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front Microbiol. 2011;2:172.
doi: 10.3389/fmicb.2011.00172
Howard EC, Henriksen JR, Buchan A, Reisch CR, Bürgmann H, Welsh R, et al. Bacterial taxa that limit sulfur flux from the ocean. Science. 2006;314:649–52.
doi: 10.1126/science.1130657
Schuller DJ, Reisch CR, Moran MA, Whitman WB, Lanzilotta WN. Structures of dimethylsulfoniopropionate-dependent demethylase from the marine organism Pelagibacter ubique. Protein Sci. 2012;21:289–98.
doi: 10.1002/pro.2015
Reisch CR, Moran MA, Whitman WB. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol. 2008;190:8018–24.
doi: 10.1128/JB.00770-08
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.
doi: 10.1186/1471-2105-11-119
Overbeek R, Bartels D, Vonstein V, Meyer F. Annotation of bacterial and archaeal genomes: improving accuracy and consistency. Chem Rev. 2007;107:3431–47.
doi: 10.1021/cr068308h
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–14.
doi: 10.1093/nar/gkt1226
Galperin MY, Koonin EV. Sources of systematic error in functional annotation of genomes: domain rearrangement, non-orthologous gene displacement and operon disruption. In Silico Biol. 1998;1:55–67.
Devos D, Valencia A. Intrinsic errors in genome annotation. Trends Genet. 2001;17:429–31.
doi: 10.1016/S0168-9525(01)02348-4
Poux S, Magrane M, Arighi CN, Bridge A, O’Donovan C, Laiho K. et al. Expert curation in UniProtKB: a case study on dealing with conflicting and erroneous data. Database (Oxford). 2014;2014:bau016.
doi: 10.1093/database/bau016
Bryson K, Loux V, Bossy R, Nicolas P, Chaillou S, van de Guchte M, et al. AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system. Nucleic Acids Res. 2006;34:3533–45.
doi: 10.1093/nar/gkl471
Meyer F, Goesmann A, McHardy AC, Bartels D, Bekel T, Clausen J, et al. GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res. 2003;31:2187–95.
doi: 10.1093/nar/gkg312
Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol. 2009;5:e1000605.
doi: 10.1371/journal.pcbi.1000605
Fitch WM. Distinguishing homologous from analogous proteins. Syst Zool. 1970;19:99–113.
doi: 10.2307/2412448
O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
doi: 10.1093/nar/gkv1189
Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G. et al. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic Acids Res. 2018;46:D692–9.
doi: 10.1093/nar/gkx1036
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.
doi: 10.1093/bioinformatics/btu153
Eren AM. https://doi.org/10.6084/m9.figshare.4902920.v1 (2017). Accessed on August 2017.
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
doi: 10.1093/molbev/msu300
Howard EC, Sun S, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol. 2008;10:2397–410.
doi: 10.1111/j.1462-2920.2008.01665.x
Howard EC, Sun S, Reisch CR, del Valle DA, Bürgmann H, Kiene RP, et al. Changes in dimethylsulfoniopropionate demethylase gene assemblages in response to an induced phytoplankton bloom. Appl Environ Microbiol. 2011;77:524–31.
doi: 10.1128/AEM.01457-10
Varaljay VA, Howard EC, Sun S, Moran MA. Deep sequencing of a dimethylsulfoniopropionate-degrading gene (dmdA) by using PCR primer pairs designed on the basis of marine metagenomic data. Appl Environ Microbiol. 2010;76:609–17.
doi: 10.1128/AEM.01258-09
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.
doi: 10.1093/bioinformatics/14.9.755
Madera M, Gough J. A comparison of profile hidden Markov model procedures for remote homology detection. Nucleic Acids Res. 2002;30:4321–8.
doi: 10.1093/nar/gkf544
Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol. 2008;4:e1000069.
doi: 10.1371/journal.pcbi.1000069
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
doi: 10.1093/nar/gkh340
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
doi: 10.1093/bioinformatics/btp348
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
doi: 10.1093/bioinformatics/btu033
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.
doi: 10.1093/bioinformatics/btr088
Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, et al. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophys Acta. 2015;1854:1019–37.
doi: 10.1016/j.bbapap.2015.04.015
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
doi: 10.1101/gr.1239303
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 2008;9:40.
doi: 10.1186/1471-2105-9-40
Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.
doi: 10.1038/nprot.2010.5
Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: protein structure and function prediction. Nat Methods. 2015;12:7–8.
doi: 10.1038/nmeth.3213
Wu S, Zhang Y. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 2007;35:3375–82.
doi: 10.1093/nar/gkm251
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–42.
doi: 10.1093/nar/28.1.235
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33:2302–9.
doi: 10.1093/nar/gki524
Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.
doi: 10.1371/journal.pcbi.1004957
Oh H-M, Kwon KK, Kang I, Kang SG, Lee J-H, Kim S-J, et al. Complete genome sequence of “Candidatus Puniceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J Bacteriol. 2010;192:3240–1.
doi: 10.1128/JB.00347-10
Ahn A-C, Meier-Kolthoff JP, Overmars L, Richter M, Woyke T, Sorokin DY. et al. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio. PLoS ONE. 2017;12:e0173517.
doi: 10.1371/journal.pone.0173517
Mattes TE, Brook L, Nunn BL, Marshall KT, Proskurowski G, Kelley DS, et al. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean. ISME J. 2013;7:2349–60.
doi: 10.1038/ismej.2013.113
Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018;12:1861–6.
doi: 10.1038/s41396-018-0091-3
Sullivan MJ, Curson ARJ, Shearer N, Todd JD, Green RT, Johnston AWB. Unusual regulation of a leaderless operon involved in the catabolism of dimethylsulfoniopropionate in Rhodobacter sphaeroides. PLoS ONE. 2011;6:e15972.
doi: 10.1371/journal.pone.0015972
Schneider K, Asao M, Carter MS, Albera BE. Rhodobacter sphaeroides uses a reductive route via propionyl coenzyme A to assimilate 3-hydroxypropionate. J Bacteriol. 2012;194:225–32.
doi: 10.1128/JB.05959-11
Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.
doi: 10.1126/science.278.5338.631
Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol. 1998;283:707–25.
doi: 10.1006/jmbi.1998.2144
Atkinson HJ, Morris JH, Ferrin TE, Babbitt PC. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE. 2009;4:e4345.
doi: 10.1371/journal.pone.0004345
Yin Y, Zhang H, Olman V, Xu Y. Genomic arrangement of bacterial operons is constrained by biological pathways encoded in the genome. Proc Natl Acad Sci USA. 2010;107:6310–5.
doi: 10.1073/pnas.0911237107
Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, et al. Discovery of new enzymes and metabolic pathways by using structure and genome context. Nature. 2013;502:698–702.
doi: 10.1038/nature12576
Vila-Costa M, Simó R, Harada H, Gasol JM, Slezak D, Kiene RP. Dimethylsulfoniopropionate uptake by marine phytoplankton. Science. 2006;314:652–4.
doi: 10.1126/science.1131043
Kiene RP, Linn LJ, González JM, Moran MA. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol. 1999;65:4549–58.
pubmed: 10508088 pmcid: 91606
González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F, Scharf B, et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol. 2003;53:1261–9.
doi: 10.1099/ijs.0.02491-0

Auteurs

José M González (JM)

Department of Microbiology, University of La Laguna, La Laguna, Spain. jmglezh@ull.es.

Laura Hernández (L)

Department of Microbiology, University of La Laguna, La Laguna, Spain.

Iris Manzano (I)

Department of Microbiology, University of La Laguna, La Laguna, Spain.

Carlos Pedrós-Alió (C)

Systems Biology Program, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation

Classifications MeSH