Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy.
RNA splicing
cardiomyopathy, hypertrophic
genetic testing
genomics
humans
Journal
Circulation. Genomic and precision medicine
ISSN: 2574-8300
Titre abrégé: Circ Genom Precis Med
Pays: United States
ID NLM: 101714113
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
entrez:
16
1
2019
pubmed:
16
1
2019
medline:
13
3
2020
Statut:
ppublish
Résumé
MYBPC3 splicing errors are a common cause of hypertrophic cardiomyopathy (HCM). Variants affecting essential splice-site dinucleotides inhibit splicing, whereas the impact of variants at conserved flanking nucleotides is less clear. We evaluated the contribution of MYBPC3 splice-site variants in a large cohort of patients with HCM and assessed the impact on splicing with RNA analysis. Patients attending a specialized multidisciplinary clinic, with a clinical diagnosis of HCM and genetic testing of at least 46 cardiomyopathy-associated genes, were included. Patients with variants in MYBPC3 splice sites with in silico-predicted effects on splicing were selected. RNA was extracted from fresh venous blood or paraffin-embedded myocardial tissue of the patients, amplified, and sequenced. Variants were classified for pathogenicity using the American College of Medical Genetics and Genomics guidelines. We found 29 rare MYBPC3 splice-site variants in 56 of 557 (10%) unrelated HCM probands. Three variants were not predicted to alter RNA splicing, and 13 essential splice dinucleotide, nonsense, and short insertion or deletion variants were not further assessed. RNA analysis was performed on 9 variants (c.654+5G>C, c.772G>A, c.821+3G>T, c.927-9G>A, c.1090G>A, c.1624G>A, c.1624+4A>T, c.3190+5G>A, and c.3491-3C>G), and RNA splicing errors were confirmed for 7. Four variants in 4 families resulted in clinically meaningful reclassifications. After RNA analysis, 4 of 56 (7%) families with MYBPC3 splice-site variants were reclassified from uncertain clinical significance to likely pathogenic. RNA analysis of splice-site variants can assist in understanding pathogenicity and increase the diagnostic yield of genetic testing in HCM.
Sections du résumé
BACKGROUND
MYBPC3 splicing errors are a common cause of hypertrophic cardiomyopathy (HCM). Variants affecting essential splice-site dinucleotides inhibit splicing, whereas the impact of variants at conserved flanking nucleotides is less clear. We evaluated the contribution of MYBPC3 splice-site variants in a large cohort of patients with HCM and assessed the impact on splicing with RNA analysis.
METHODS
Patients attending a specialized multidisciplinary clinic, with a clinical diagnosis of HCM and genetic testing of at least 46 cardiomyopathy-associated genes, were included. Patients with variants in MYBPC3 splice sites with in silico-predicted effects on splicing were selected. RNA was extracted from fresh venous blood or paraffin-embedded myocardial tissue of the patients, amplified, and sequenced. Variants were classified for pathogenicity using the American College of Medical Genetics and Genomics guidelines.
RESULTS
We found 29 rare MYBPC3 splice-site variants in 56 of 557 (10%) unrelated HCM probands. Three variants were not predicted to alter RNA splicing, and 13 essential splice dinucleotide, nonsense, and short insertion or deletion variants were not further assessed. RNA analysis was performed on 9 variants (c.654+5G>C, c.772G>A, c.821+3G>T, c.927-9G>A, c.1090G>A, c.1624G>A, c.1624+4A>T, c.3190+5G>A, and c.3491-3C>G), and RNA splicing errors were confirmed for 7. Four variants in 4 families resulted in clinically meaningful reclassifications.
CONCLUSIONS
After RNA analysis, 4 of 56 (7%) families with MYBPC3 splice-site variants were reclassified from uncertain clinical significance to likely pathogenic. RNA analysis of splice-site variants can assist in understanding pathogenicity and increase the diagnostic yield of genetic testing in HCM.
Identifiants
pubmed: 30645170
doi: 10.1161/CIRCGEN.118.002368
doi:
Substances chimiques
Carrier Proteins
0
RNA Splice Sites
0
myosin-binding protein C
0
RNA
63231-63-0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM