Pressure-Temperature Analysis of the Stability of the CTL9 Domain Reveals Hidden Intermediates.


Journal

Biophysical journal
ISSN: 1542-0086
Titre abrégé: Biophys J
Pays: United States
ID NLM: 0370626

Informations de publication

Date de publication:
05 02 2019
Historique:
received: 13 09 2018
revised: 13 12 2018
accepted: 02 01 2019
pubmed: 28 1 2019
medline: 21 1 2020
entrez: 28 1 2019
Statut: ppublish

Résumé

The observation of two-state unfolding for many small single-domain proteins by denaturants has led to speculation that protein sequences may have evolved to limit the population of partially folded states that could be detrimental to fitness. How such strong cooperativity arises from a multitude of individual interactions is not well understood. Here, we investigate the stability and folding cooperativity of the C-terminal domain of the ribosomal protein L9 in the pressure-temperature plane using site-specific NMR. In contrast to apparent cooperative unfolding detected with denaturant-induced and thermal-induced unfolding experiments and stopped-flow refolding studies at ambient pressure, NMR-detected pressure unfolding revealed significant deviation from two-state behavior, with a core region that was selectively destabilized by increasing temperature. Comparison of pressure-dependent NMR signals from both the folded and unfolded states revealed the population of at least one invisible excited state at atmospheric pressure. The core destabilizing cavity-creating I98A mutation apparently increased the cooperativity of the loss of folded-state peak intensity while also increasing the population of this invisible excited state present at atmospheric pressure. These observations highlight how local stability is subtly modulated by sequence to tune protein conformational landscapes and illustrate the ability of pressure- and temperature-dependent studies to reveal otherwise hidden states.

Identifiants

pubmed: 30685054
pii: S0006-3495(19)30017-7
doi: 10.1016/j.bpj.2019.01.002
pmc: PMC6369443
pii:
doi:

Substances chimiques

Ribosomal Proteins 0
ribosomal protein L9 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

445-453

Informations de copyright

Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Références

Science. 1995 Jul 14;269(5221):192-7
pubmed: 7618079
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7684-9
pubmed: 23603271
J Mol Graph. 1996 Feb;14(1):33-8, 27-8
pubmed: 8744570
Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8153-E8161
pubmed: 30104366
Nature. 1988 Oct 20;335(6192):700-4
pubmed: 2845279
Nat Struct Biol. 2000 Jul;7(7):547-50
pubmed: 10876238
J Am Chem Soc. 2013 Oct 2;135(39):14610-8
pubmed: 23987660
Protein Sci. 2010 Apr;19(4):631-41
pubmed: 20095051
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6945-50
pubmed: 22496593
Proteins. 2005 Jun 1;59(4):687-96
pubmed: 15815974
J Am Chem Soc. 2016 Nov 23;138(46):15260-15266
pubmed: 27781428
Biochemistry. 2007 Jan 30;46(4):1013-21
pubmed: 17240985
Protein Sci. 2016 Nov;25(11):1924-1941
pubmed: 27522064
Annu Rev Biophys. 2016 Jul 5;45:135-52
pubmed: 27145881
Electrophoresis. 1997 Dec;18(15):2714-23
pubmed: 9504803
Cell. 2007 Feb 9;128(3):613-24
pubmed: 17289578
EMBO J. 1994 Jan 1;13(1):205-12
pubmed: 8306963
J Mol Biol. 2007 Apr 20;368(1):256-62
pubmed: 17337003
Biochemistry. 2013 Apr 9;52(14):2402-9
pubmed: 23461364
J Mol Biol. 2002 Apr 26;318(2):571-82
pubmed: 12051860
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
Biochemistry. 2002 Oct 15;41(41):12277-83
pubmed: 12369815
Nat Chem. 2018 Sep;10(9):903-909
pubmed: 29988151
Arch Biochem Biophys. 2013 Mar;531(1-2):14-23
pubmed: 23098780
Biochemistry. 2006 Jul 18;45(28):8499-506
pubmed: 16834323
J Mol Biol. 2011 May 6;408(3):514-28
pubmed: 21377472
J Mol Biol. 2005 Jan 7;345(1):163-73
pubmed: 15567419
J R Soc Interface. 2018 Jul;15(144):
pubmed: 30021929
Biochemistry. 2009 Jun 9;48(22):4707-19
pubmed: 19301913
BMC Struct Biol. 2008 Nov 14;8:49
pubmed: 19014592
Curr Opin Struct Biol. 2011 Feb;21(1):12-24
pubmed: 21144739
Adv Protein Chem. 1995;46:217-47
pubmed: 7771319

Auteurs

Siwen Zhang (S)

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York.

Yi Zhang (Y)

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York.

Natalie E Stenzoski (NE)

Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York.

Junjie Zou (J)

Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York.

Ivan Peran (I)

Department of Chemistry, Stony Brook University, Stony Brook, New York.

Scott A McCallum (SA)

Center for Biotechnology and Interdisciplinary Studies.

Daniel P Raleigh (DP)

Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York; Department of Chemistry, Stony Brook University, Stony Brook, New York; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York; Institue of Structural and Molecular Biology, University College London, London, United Kingdom. Electronic address: daniel.raleigh@stonybrook.edu.

Catherine A Royer (CA)

Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York. Electronic address: royerc@rpi.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Classifications MeSH