Loss of whole chromosome X predicts prognosis of neuroblastoma patients with numerical genomic profile.
cancer survival
decision tree (DT)
neuroblastoma
numerical whole-chromosome aberrations (NCA)
Journal
Pediatric blood & cancer
ISSN: 1545-5017
Titre abrégé: Pediatr Blood Cancer
Pays: United States
ID NLM: 101186624
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
05
10
2018
revised:
17
12
2018
accepted:
05
01
2019
pubmed:
29
1
2019
medline:
18
12
2019
entrez:
29
1
2019
Statut:
ppublish
Résumé
Neuroblastoma (NB), a pediatric tumor of the sympathetic nervous system, is characterized by very frequent chromosomal aberrations at the onset of the disease. Identification of further risk factors for relapse, which could lead to increased survival and potentially reduced late effects among survivors, is still urgently needed. Segmental chromosome aberrations (SCA) are associated with poor prognosis, whereas numerical whole-chromosome aberrations (NCA) are found in patients with a good prognosis; however, a small percentage of the latter patients (10%-15%) subsequently relapse and/or die of disease. DNA copy-number data from 174 NB patients with an NCA genomic profile were analyzed. Association between NCA and event-free survival (EFS) was investigated by the Kaplan-Meier estimator and prognostic decision tree (DT). DT identified 65 patients with normal chromosome X and an excellent five-year EFS (100%) independently from the stage at diagnosis. The association between poor EFS and whole chromosome X alterations was confirmed after stratification into two groups of different expected prognosis and by internal validation via bootstrap analysis. Furthermore, the association was also observed in an independent cohort of NB patients extracted from the data set of the National Cancer Institute TARGET Project for Neuroblastoma, but sample size was small (n = 75) and statistical significance was not achieved. Loss of whole chromosome X may represent a new prognostic marker for NB patients with an NCA genomic profile. If confirmed by further studies, this finding could indicate that such patients should be reclassified as intermediate risk and treated accordingly.
Sections du résumé
BACKGROUND
Neuroblastoma (NB), a pediatric tumor of the sympathetic nervous system, is characterized by very frequent chromosomal aberrations at the onset of the disease. Identification of further risk factors for relapse, which could lead to increased survival and potentially reduced late effects among survivors, is still urgently needed. Segmental chromosome aberrations (SCA) are associated with poor prognosis, whereas numerical whole-chromosome aberrations (NCA) are found in patients with a good prognosis; however, a small percentage of the latter patients (10%-15%) subsequently relapse and/or die of disease.
PROCEDURE
DNA copy-number data from 174 NB patients with an NCA genomic profile were analyzed. Association between NCA and event-free survival (EFS) was investigated by the Kaplan-Meier estimator and prognostic decision tree (DT).
RESULTS
DT identified 65 patients with normal chromosome X and an excellent five-year EFS (100%) independently from the stage at diagnosis. The association between poor EFS and whole chromosome X alterations was confirmed after stratification into two groups of different expected prognosis and by internal validation via bootstrap analysis. Furthermore, the association was also observed in an independent cohort of NB patients extracted from the data set of the National Cancer Institute TARGET Project for Neuroblastoma, but sample size was small (n = 75) and statistical significance was not achieved.
CONCLUSIONS
Loss of whole chromosome X may represent a new prognostic marker for NB patients with an NCA genomic profile. If confirmed by further studies, this finding could indicate that such patients should be reclassified as intermediate risk and treated accordingly.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e27635Informations de copyright
© 2019 Wiley Periodicals, Inc.