Alternative splicing of ZmCCA1 mediates drought response in tropical maize.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
15
06
2018
accepted:
17
01
2019
entrez:
31
1
2019
pubmed:
31
1
2019
medline:
9
11
2019
Statut:
epublish
Résumé
The circadian clock regulates numerous biological processes in plants, especially development and stress responses. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) is one of the core components of the day-night rhythm response and is reportedly associated with ambient temperature in Arabidopsis thaliana. However, it remains unknown if alternative splicing of ZmCCA1 is modulated by external stress in maize, such as drought stress and photoperiod. Here, we identified three ZmCCA1 splice variants in the tropical maize line CML288, which are predicted to encode three different protein isoforms, i.e., ZmCCA1.1, ZmCCA1.2, and ZmCCA1.3, which all retain the MYB domain. In maize, the expression levels of ZmCCA1 splice variants were influenced by photoperiod, tissue type, and drought stress. In transgenic A. thaliana, ZmCCA1.1 may be more effective than ZmCCA1.3 in increasing drought tolerance while ZmCCA1.2 may have only a small effect on tolerance to drought stress. Additionally, although CCA1 genes have been found in many plant species, alternative CCA1 splicing events are known to occur in species-specific ways. Our study provides new sight to explore the function of ZmCCA1 splice variants' response to abiotic stress, and clarify the linkage between circadian clock and environmental stress in maize.
Identifiants
pubmed: 30699185
doi: 10.1371/journal.pone.0211623
pii: PONE-D-18-15451
pmc: PMC6353190
doi:
Substances chimiques
Plant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0211623Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Front Plant Sci. 2017 May 10;8:694
pubmed: 28539927
Mol Cell Biol. 2008 Jul;28(13):4320-30
pubmed: 18443041
DNA Res. 2017 Apr 1;24(2):205-217
pubmed: 28025318
PLoS One. 2010 Nov 19;5(11):e14068
pubmed: 21124912
Nat Plants. 2016 Apr 29;2(5):16055
pubmed: 27243649
BMC Plant Biol. 2016 Nov 3;16(1):239
pubmed: 27809780
Proc Biol Sci. 2013 Jul 03;280(1765):20130011
pubmed: 23825200
BMC Genomics. 2018 Jan 23;19(1):73
pubmed: 29361913
Plant Cell. 2012 Jun;24(6):2427-42
pubmed: 22715042
Cell. 1998 Jun 26;93(7):1207-17
pubmed: 9657153
Genome Res. 2010 Jan;20(1):45-58
pubmed: 19858364
Plant Signal Behav. 2012 Sep 1;7(9):1194-6
pubmed: 22899064
Genome Res. 2012 Jun;22(6):1184-95
pubmed: 22391557
Plant Signal Behav. 2015;10(11):e1093715
pubmed: 26452406
Planta. 2012 Feb;235(2):253-66
pubmed: 21866346
J Exp Bot. 2006;57(6):1263-73
pubmed: 16531467
Nat Commun. 2017 Feb 01;8:14320
pubmed: 28145403
Physiol Mol Biol Plants. 2013 Jul;19(3):307-21
pubmed: 24431500
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Adv Exp Med Biol. 2007;623:190-211
pubmed: 18380348
Plant Biotechnol J. 2018 Mar;16(3):714-726
pubmed: 28834352
Wiley Interdiscip Rev RNA. 2016 Sep;7(5):661-82
pubmed: 27173476
Plant Cell. 2012 Aug;24(8):3278-95
pubmed: 22942380
Cell. 1998 Jun 26;93(7):1219-29
pubmed: 9657154
Trends Plant Sci. 2010 Oct;15(10):573-81
pubmed: 20674465
BMC Plant Biol. 2014 May 19;14:136
pubmed: 24885185
Plant Physiol. 2014 Apr 28;165(2):826-840
pubmed: 24777346
Genome Res. 2010 May;20(5):646-54
pubmed: 20305017
Trends Plant Sci. 2010 May;15(5):259-65
pubmed: 20382065
Gene. 2017 Jul 1;619:44-49
pubmed: 28389360
J Plant Physiol. 2017 Jul;214:81-90
pubmed: 28460279
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Plant Cell Rep. 2011 Jul;30(7):1261-72
pubmed: 21327386
Nat Commun. 2011;2:303
pubmed: 21556057
Plant Biol (Stuttg). 2015 Mar;17(2):419-29
pubmed: 25255693
Science. 2012 Apr 6;336(6077):75-9
pubmed: 22403178
Curr Opin Plant Biol. 2008 Oct;11(5):514-20
pubmed: 18678522
Plant Cell Physiol. 2009 Apr;50(4):838-54
pubmed: 19233867