Pasireotide protects mammalian cochlear hair cells from gentamicin ototoxicity by activating the PI3K-Akt pathway.
Animals
Anti-Bacterial Agents
/ adverse effects
Female
Gentamicins
/ adverse effects
Hair Cells, Auditory
/ drug effects
Hearing Loss
/ chemically induced
Hormones
/ pharmacology
Humans
Male
Mice
Ototoxicity
/ etiology
Phosphatidylinositol 3-Kinases
/ metabolism
Proto-Oncogene Proteins c-akt
/ metabolism
Somatostatin
/ analogs & derivatives
Journal
Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092
Informations de publication
Date de publication:
06 02 2019
06 02 2019
Historique:
received:
30
10
2018
accepted:
15
01
2019
revised:
18
12
2018
entrez:
8
2
2019
pubmed:
8
2
2019
medline:
5
6
2020
Statut:
epublish
Résumé
Gentamicin is a widely used antibiotic for the treatment of gram-negative bacterial infections; however, its use often results in significant and permanent hearing loss. Hearing loss resulting from hair cell (HC) degeneration affects millions of people worldwide, and one major cause is the loss of sensory HCs in the inner ear due to aminoglycoside exposure. Strategies to overcome the apparently irreversible loss of HCs in mammals are crucial for hearing protection. Here, we report that the somatostatin analog pasireotide protects mouse cochlear HCs from gentamicin damage using a well-established in vitro gentamicin-induced HC loss model and that the otoprotective effects of pasireotide are due to Akt up-regulation via the PI3K-Akt signal pathway activation. We demonstrate active caspase signal in organ of Corti (OC) explants exposed to gentamicin and show that pasireotide treatment activates survival genes, reduces caspase signal, and increases HC survival. The neuropeptide somatostatin and its selective analogs have provided neuroprotection by activating five somatostatin receptor (SSTR1-SSTR5) subtypes. Pasireotide has a high affinity for SSTR2 and SSTR5, and the addition of SSTR2- and SSTR5-specific antagonists leads to a loss of protection. The otoprotective effects of pasireotide were also observed in a gentamicin-injured animal model. In vivo studies have shown that 13 days of subcutaneous pasireotide application prevents gentamicin-induced HC death and permanent hearing loss in mice. Auditory brainstem response analysis confirmed the protective effect of pasireotide, and we found a significant threshold shift at all measured frequencies (4, 8, 16, 24, and 32 kHz). Together, these findings indicate that pasireotide is a novel otoprotective peptide acting via the PI3K-Akt pathway and may be of therapeutic value for HC protection from ototoxic insults.
Identifiants
pubmed: 30728348
doi: 10.1038/s41419-019-1386-7
pii: 10.1038/s41419-019-1386-7
pmc: PMC6365508
doi:
Substances chimiques
Anti-Bacterial Agents
0
Gentamicins
0
Hormones
0
Somatostatin
51110-01-1
pasireotide
98H1T17066
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
110Références
Basic Res Cardiol. 2014 Jul;109(4):420
pubmed: 24951957
Mol Endocrinol. 1998 Jul;12(7):914-23
pubmed: 9658397
Audiol Neurootol. 2010;15(5):282-90
pubmed: 20130394
BMC Neurosci. 2011 Nov 14;12:114
pubmed: 22082490
BMC Neurosci. 2011 Sep 06;12:89
pubmed: 21896184
J Neurosci. 2006 Mar 29;26(13):3541-50
pubmed: 16571762
PLoS One. 2017 Nov 28;12(11):e0188596
pubmed: 29182629
Biochem J. 2007 Feb 15;402(1):1-15
pubmed: 17238862
Exp Mol Med. 2013 Mar 08;45:e12
pubmed: 23470714
Laryngoscope. 2009 May;119(5):933-7
pubmed: 19294753
Dev Neurosci. 2012;34(4):342-53
pubmed: 22986312
Brain Res. 2004 Jan 30;997(1):40-51
pubmed: 14715148
J Clin Invest. 1986 May;77(5):1492-500
pubmed: 3700652
Annu Rev Biochem. 1998;67:481-507
pubmed: 9759495
Hear Res. 2000 Jan;139(1-2):97-115
pubmed: 10601716
Neuroscience. 1995 Mar;65(2):551-61
pubmed: 7777168
Front Neuroendocrinol. 1999 Jul;20(3):157-98
pubmed: 10433861
Swiss Med Wkly. 2008 Nov 29;138(47-48):708-12
pubmed: 18843561
Hear Res. 1985;19(2):171-82
pubmed: 4055536
Oncogene. 2010 Feb 4;29(5):698-710
pubmed: 19881549
Anat Rec (Hoboken). 2012 Nov;295(11):1837-50
pubmed: 23045231
Nature. 2001 Sep 13;413(6852):194-202
pubmed: 11557988
Invest Ophthalmol Vis Sci. 2008 Jul;49(7):3080-9
pubmed: 18390640
PLoS One. 2011;6(7):e22347
pubmed: 21818312
Int J Pept. 2013;2013:926295
pubmed: 23476673
PLoS One. 2015 Mar 26;10(3):e0121599
pubmed: 25811375
J Physiol Paris. 2000 May-Aug;94(3-4):205-10
pubmed: 11087998
Mol Cell Endocrinol. 2008 May 14;286(1-2):69-74
pubmed: 17977644
J Neurosci Res. 1989 Oct;24(2):338-46
pubmed: 2585554
Front Biosci. 2008 Jan 01;13:822-40
pubmed: 17981589
Cell. 2007 Jun 29;129(7):1261-74
pubmed: 17604717
Mol Cell Endocrinol. 2008 May 14;286(1-2):40-8
pubmed: 17913342
Cell Cycle. 2003 Jul-Aug;2(4):339-45
pubmed: 12851486
Mol Cell Biol. 2003 Jul;23(13):4471-84
pubmed: 12808090
J Cell Biol. 2001 Sep 3;154(5):995-1005
pubmed: 11524433
PLoS One. 2014 Sep 30;9(9):e108146
pubmed: 25268135
J Assoc Res Otolaryngol. 2009 Jun;10(2):205-19
pubmed: 19255807
Cell Signal. 1995 Jan;7(1):1-8
pubmed: 7538774
J Assoc Res Otolaryngol. 2003 Jun;4(2):176-95
pubmed: 12943372
Hear Res. 2002 Oct;172(1-2):81-6
pubmed: 12361869
J Assoc Res Otolaryngol. 2005 Sep;6(3):260-8
pubmed: 15983725
Eur Arch Otorhinolaryngol. 2006 Jan;263(1):75-8
pubmed: 16283196
Acta Otolaryngol. 1967;:Suppl 220:1-44
pubmed: 6067797
Genes Dev. 1997 Mar 15;11(6):701-13
pubmed: 9087425
J Neurochem. 2016 Dec;139(6):1113-1123
pubmed: 27787949
PLoS One. 2012;7(1):e30790
pubmed: 22292041
Biochim Biophys Acta. 2003 Sep 22;1616(1):1-84
pubmed: 14507421
Acta Otolaryngol Suppl. 1993;502:3-36
pubmed: 8475741
Neuroendocrinology. 2004;80 Suppl 1:47-50
pubmed: 15477717
J Neurosci Res. 2005 Mar 1;79(5):644-51
pubmed: 15672440