Chronic intrauterine hypoxia alters neurodevelopment in fetal sheep.
Animals
Apoptosis
Brain
/ growth & development
Brain Diseases
/ blood
Capillaries
/ pathology
Chronic Disease
Disease Models, Animal
Female
Fetal Blood
/ metabolism
Fetal Development
Fetal Hypoxia
/ blood
Gestational Age
Myelin Sheath
/ metabolism
Neovascularization, Physiologic
Neurogenesis
Neurons
/ metabolism
Oxygen
/ blood
Pregnancy
Sheep, Domestic
congenital heart disease
fetal hypoxia
neurodevelopment
Journal
The Journal of thoracic and cardiovascular surgery
ISSN: 1097-685X
Titre abrégé: J Thorac Cardiovasc Surg
Pays: United States
ID NLM: 0376343
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
29
07
2018
revised:
16
12
2018
accepted:
31
12
2018
pubmed:
13
2
2019
medline:
25
2
2020
entrez:
13
2
2019
Statut:
ppublish
Résumé
We tested the hypothesis that chronic fetal hypoxia, at a severity present in many types of congenital heart disease, would lead to abnormal neurodevelopment. Eight mid-gestation fetal sheep were cannulated onto a pumpless extracorporeal oxygenator via the umbilical vessels and supported in a fluid-filled environment for 22 ± 2 days under normoxic or hypoxic conditions. Total parenteral nutrition was provided. Control fetuses (n = 7) were harvested at gestational age 133 ± 4 days. At necropsy, brains were fixed for histopathology. Neurons were quantified in white matter tracts, and the thickness of the external granular layer of the cerebellum was measured to assess neuronal migration. Capillary density and myelination were quantified in white matter. Data were analyzed with unpaired Student t tests or 1-way analysis of variance, as appropriate. Oxygen delivery was reduced in hypoxic fetuses (15.6 ± 1.8 mL/kg/min vs 24.3 ± 2.3 mL/kg/min, P < .01), but umbilical blood flow and caloric delivery were not different between the 2 groups. Compared with normoxic and control animals, hypoxic fetuses had reduced neuronal density and increased external granular layer thickness. Compared with normoxic and control animals, hypoxic fetuses had increased capillary density in white matter. Cortical myelin integrity score was lower in the hypoxic group compared with normoxic and control animals. There was a significant negative correlation between myelin integrity and capillary density. Chronic fetal hypoxia leads to white matter hyper-vascularity, decreased neuronal density, and impaired myelination, similar to the neuropathologic findings observed in children with congenital heart disease. These findings support the hypothesis that fetal hypoxia, even in the setting of normal caloric delivery, impairs neurodevelopment.
Identifiants
pubmed: 30745051
pii: S0022-5223(19)30020-0
doi: 10.1016/j.jtcvs.2018.12.093
pmc: PMC6690589
mid: NIHMS1045175
pii:
doi:
Substances chimiques
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1982-1991Subventions
Organisme : NICHD NIH HHS
ID : P30 HD026979
Pays : United States
Organisme : NINDS NIH HHS
ID : R21 NS103075
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD086984
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
Copyright © 2019. Published by Elsevier Inc.
Références
J Child Neurol. 2006 Jul;21(7):582-9
pubmed: 16970848
Pediatrics. 2015 May;135(5):816-25
pubmed: 25917996
Circulation. 2010 Jan 5;121(1):26-33
pubmed: 20026783
Fetal Diagn Ther. 2019;45(3):176-183
pubmed: 29953976
J Thorac Cardiovasc Surg. 2003 Nov;126(5):1385-96
pubmed: 14666010
J Thorac Cardiovasc Surg. 2016 Oct;152(4):1095-103
pubmed: 27349283
J Pediatr. 2016 Jan;168:220-5.e1
pubmed: 26490132
J Am Coll Cardiol. 2002 Jun 19;39(12):1890-900
pubmed: 12084585
J Thorac Cardiovasc Surg. 2010 Mar;139(3):543-56
pubmed: 19909994
Physiol Rev. 1978 Apr;58(2):499-527
pubmed: 417347
J Physiol. 2018 May 1;596(9):1575-1585
pubmed: 29392729
Am J Physiol Regul Integr Comp Physiol. 2006 Apr;290(4):R1105-14
pubmed: 16322350
Sci Rep. 2016 Apr 28;6:25178
pubmed: 27121655
Circ Cardiovasc Imaging. 2017 Nov;10(11):e006459
pubmed: 29141840
J Thorac Cardiovasc Surg. 2004 Dec;128(6):841-9
pubmed: 15573068
N Engl J Med. 2007 Nov 8;357(19):1928-38
pubmed: 17989385
Pediatr Res. 2016 Aug;80(2):172-7
pubmed: 27055190
Brain Res. 2007 Jun 2;1151:161-71
pubmed: 17418109
J Thorac Cardiovasc Surg. 2009 Mar;137(3):529-36; discussion 536-7
pubmed: 19258059
Ann Neurol. 2012 Mar;71(3):397-406
pubmed: 22451205
J Thorac Cardiovasc Surg. 2008 Dec;136(6):1413-21, 1421.e1-1421.e2
pubmed: 19114183
Am J Physiol. 1987 Jan;252(1 Pt 2):H100-9
pubmed: 3101514
Circulation. 2010 Nov 30;122(22):2264-72
pubmed: 21098444
Nat Commun. 2017 Apr 25;8:15112
pubmed: 28440792
Circulation. 2011 Sep 20;124(12):1361-9
pubmed: 21875911
Ann Clin Transl Neurol. 2016 Aug 14;3(9):708-22
pubmed: 27648460
Am J Obstet Gynecol. 2007 Jul;197(1):56.e1-7
pubmed: 17618757
Circulation. 2002 Sep 24;106(12 Suppl 1):I109-14
pubmed: 12354718
Circulation. 2015 Apr 14;131(15):1313-23
pubmed: 25762062
Dev Cell. 2014 Jul 28;30(2):116-7
pubmed: 25073152
Science. 2016 Oct 7;354(6308):
pubmed: 27846470
J Physiol. 1972 Jun;223(2):375-93
pubmed: 5039279
Brain Res Dev Brain Res. 1997 Nov 12;103(2):103-18
pubmed: 9427475
Cell. 2014 Jul 17;158(2):383-396
pubmed: 25018103
Sci Transl Med. 2017 Jan 25;9(374):
pubmed: 28123074