Solanum lycopersicum GOLDEN 2-LIKE 2 transcription factor affects fruit quality in a light- and auxin-dependent manner.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
05
10
2018
accepted:
29
01
2019
entrez:
13
2
2019
pubmed:
13
2
2019
medline:
14
11
2019
Statut:
epublish
Résumé
Plastids are organelles responsible for essential aspects of plant development, including carbon fixation and synthesis of several secondary metabolites. Chloroplast differentiation and activity are highly regulated by light, and several proteins involved in these processes have been characterised. Such is the case of the GOLDEN 2-LIKE (GLK) transcription factors, which induces the expression of genes related to chloroplast differentiation and photosynthesis. The tomato (Solanum lycopersicum) genome harbours two copies of this gene, SlGLK1 and SlGLK2, each with distinct expression patterns. While the former predominates in leaves, the latter is mainly expressed in fruits, precisely at the pedicel region. During tomato domestication, the selection of fruits with uniform ripening fixed the mutation Slglk2, nowadays present in most cultivated varieties, what penalised fruit metabolic composition. In this study, we investigated how SlGLK2 is regulated by light, auxin and cytokinin and determined the effect of SlGLK2 on tocopherol (vitamin E) and sugar metabolism, which are components of the fruit nutritional and industrial quality. To achieve this, transcriptional profiling and biochemical analysis were performed throughout fruit development and ripening from SlGLK2, Slglk2, SlGLK2-overexpressing genotypes, as well as from phytochrome and hormonal deficient mutants. The results revealed that SlGLK2 expression is regulated by phytochrome-mediated light perception, yet this gene can induce chloroplast differentiation even in a phytochrome-independent manner. Moreover, auxin was found to be a negative regulator of SlGLK2 expression, while SlGLK2 enhances cytokinin responsiveness. Additionally, SlGLK2 enhanced chlorophyll content in immature green fruits, leading to an increment in tocopherol level in ripe fruits. Finally, SlGLK2 overexpression resulted in higher total soluble solid content, possibly by the regulation of sugar metabolism enzyme-encoding genes. The results obtained here shed light on the regulatory network that interconnects SlGLK2, phytohormones and light signal, promoting the plastidial activity and consequently, influencing the quality of tomato fruit.
Identifiants
pubmed: 30753245
doi: 10.1371/journal.pone.0212224
pii: PONE-D-18-28966
pmc: PMC6372215
doi:
Substances chimiques
Indoleacetic Acids
0
Plant Proteins
0
Transcription Factors
0
Chlorophyll
1406-65-1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0212224Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Plant Methods. 2010 Oct 07;6:23
pubmed: 20929550
Sultan Qaboos Univ Med J. 2014 May;14(2):e157-65
pubmed: 24790736
Planta. 2006 Jun;224(1):133-44
pubmed: 16395583
Planta. 2001 Apr;212(5-6):823-8
pubmed: 11346957
Plant Cell. 2012 Mar;24(3):1081-95
pubmed: 22415275
Trends Plant Sci. 2002 May;7(5):193-5
pubmed: 11992820
Trends Biotechnol. 2004 Mar;22(3):104-7
pubmed: 15043044
J Exp Bot. 2014 Aug;65(16):4589-98
pubmed: 24723405
Plant Physiol. 1999 Oct;121(2):461-69
pubmed: 10517837
Plant Cell Physiol. 2005 Apr;46(4):661-5
pubmed: 15695440
J Gen Virol. 1998 Jun;79 ( Pt 6):1487-94
pubmed: 9634092
J Exp Bot. 2011 Jul;62(11):3781-98
pubmed: 21527625
Plant Mol Biol. 2013 Feb;81(3):309-25
pubmed: 23247837
Plant J. 2002 Nov;32(4):603-13
pubmed: 12445130
J Plant Physiol. 2010 Dec 15;167(18):1577-83
pubmed: 20594612
Plant Physiol. 2017 Apr;173(4):2340-2355
pubmed: 28193764
Nucleic Acids Res. 2002 May 1;30(9):e36
pubmed: 11972351
J Exp Bot. 2015 Aug;66(16):4999-5013
pubmed: 25873684
Am J Clin Nutr. 2004 Jul;80(1):143-8
pubmed: 15213041
J Exp Bot. 2016 Feb;67(3):919-34
pubmed: 26596763
Plant Physiol. 2013 Mar;161(3):1362-74
pubmed: 23341361
Plant Physiol. 2011 Dec;157(4):1650-63
pubmed: 21972266
Ann N Y Acad Sci. 2004 Dec;1031:223-33
pubmed: 15753148
Plant Mol Biol. 1987 Mar;9(2):97-107
pubmed: 24276899
Methods Mol Biol. 2011;774:19-32
pubmed: 21822830
Phytochemistry. 2015 Mar;111:72-83
pubmed: 25432273
Nat Rev Mol Cell Biol. 2013 Dec;14(12):787-802
pubmed: 24263360
Annu Rev Plant Biol. 2008;59:281-311
pubmed: 18257712
Plant Cell. 2007 Mar;19(3):731-49
pubmed: 17337630
Trends Plant Sci. 2009 Apr;14(4):219-28
pubmed: 19303348
Plant Cell. 2014 Feb;26(2):585-601
pubmed: 24510723
J Nutr. 2005 May;135(5):1226-30
pubmed: 15867308
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17815-20
pubmed: 20837525
Ann N Y Acad Sci. 2015 Mar;1340:29-38
pubmed: 25586886
EMBO J. 1987 Dec 20;6(13):3901-7
pubmed: 3327686
J Nutr. 1990 Mar;120(3):233-42
pubmed: 2181082
Science. 2012 Jun 29;336(6089):1711-5
pubmed: 22745430
Alzheimers Dement. 2015 Jan;11(1):32-9
pubmed: 24589434
Mol Plant. 2014 Dec;7(12):1776-87
pubmed: 25296857
Plant Cell. 2009 Apr;21(4):1109-28
pubmed: 19376934
Sci Rep. 2017 Aug 10;7(1):7822
pubmed: 28798491
J Exp Bot. 2018 Jun 27;69(15):3573-3586
pubmed: 29912373
Plant J. 2002 Sep;31(6):713-27
pubmed: 12220263
Plant Cell Physiol. 2016 Mar;57(3):642-53
pubmed: 26880818
Plant Physiol. 1999 Jan;119(1):143-52
pubmed: 9880355
Plant Cell Environ. 2014 Feb;37(2):392-401
pubmed: 23848570
J Plant Physiol. 2005 Jul;162(7):729-37
pubmed: 16008096
J Cell Biol. 1963 Apr;17:208-12
pubmed: 13986422
Nucleic Acids Res. 2009 Apr;37(6):e45
pubmed: 19237396
J Biophys Biochem Cytol. 1958 Jul 25;4(4):475-8
pubmed: 13563554
Plant Cell. 2003 Nov;15(11):2532-50
pubmed: 14555694
Plant Physiol. 2013 Mar;161(3):1476-85
pubmed: 23292788