Targeting the Iron-Response Elements of the mRNAs for the Alzheimer's Amyloid Precursor Protein and Ferritin to Treat Acute Lead and Manganese Neurotoxicity.


Journal

International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791

Informations de publication

Date de publication:
25 Feb 2019
Historique:
received: 13 01 2019
revised: 08 02 2019
accepted: 10 02 2019
entrez: 3 3 2019
pubmed: 3 3 2019
medline: 18 7 2019
Statut: epublish

Résumé

The therapeutic value of inhibiting translation of the amyloid precursor protein (APP) offers the possibility to reduce neurotoxic amyloid formation, particularly in cases of familial Alzheimer's disease (AD) caused by APP gene duplications (Dup⁻APP) and in aging Down syndrome individuals. APP mRNA translation inhibitors such as the anticholinesterase phenserine, and high throughput screened molecules, selectively inhibited the uniquely folded iron-response element (IRE) sequences in the 5'untranslated region (5'UTR) of APP mRNA and this class of drug continues to be tested in a clinical trial as an anti-amyloid treatment for AD. By contrast, in younger age groups, APP expression is not associated with amyloidosis, instead it acts solely as a neuroprotectant while facilitating cellular ferroportin-dependent iron efflux. We have reported that the environmental metallotoxins Lead (Pb) and manganese (Mn) cause neuronal death by interfering with IRE dependent translation of APP and ferritin. The loss of these iron homeostatic neuroprotectants thereby caused an embargo of iron (Fe) export from neurons as associated with excess unstored intracellular iron and the formation of toxic reactive oxidative species (ROS). We propose that APP 5'UTR directed translation activators can be employed therapeutically to protect neurons exposed to high acute Pb and/or Mn exposure. Certainly, high potency APP translation activators, exemplified by the Food and Drug Administration (FDA) pre-approved M1 muscarinic agonist AF102B and high throughput-screened APP 5'UTR translation activators, are available for drug development to treat acute toxicity caused by Pb/Mn exposure to neurons. We conclude that APP translation activators can be predicted to prevent acute metal toxicity to neurons by a mechanism related to the 5'UTR specific yohimbine which binds and targets the canonical IRE RNA stem loop as an H-ferritin translation activator.

Identifiants

pubmed: 30823541
pii: ijms20040994
doi: 10.3390/ijms20040994
pmc: PMC6412244
pii:
doi:

Substances chimiques

5' Untranslated Regions 0
Amyloid beta-Protein Precursor 0
Iron-Regulatory Proteins 0
Muscarinic Agonists 0
Quinuclidines 0
RNA, Messenger 0
Thiophenes 0
Ferritins 9007-73-2
Iron E1UOL152H7
cevimeline K9V0CDQ56E

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Michael J. Fox Foundation for Parkinson's Research
ID : MJFF15468
Organisme : Michael J. Fox Foundation for Parkinson's Research
ID : 15468

Références

J Biol Chem. 1999 Mar 5;274(10):6421-31
pubmed: 10037734
Brain Res. 1999 Jun 26;833(1):125-32
pubmed: 10375687
Neurobiol Dis. 1999 Jun;6(3):167-79
pubmed: 10408806
Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12108-13
pubmed: 10518584
Ann Neurol. 2000 Dec;48(6):913-8
pubmed: 11117548
Jpn J Pharmacol. 2000 Oct;84(2):101-12
pubmed: 11128032
Ann N Y Acad Sci. 2000;920:315-20
pubmed: 11193170
Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7605-10
pubmed: 11404470
Biochem Soc Trans. 2002 Aug;30(4):758-62
pubmed: 12196188
J Biol Chem. 2002 Nov 22;277(47):45518-28
pubmed: 12198135
J Mol Neurosci. 2002 Aug-Oct;19(1-2):145-53
pubmed: 12212772
Neuron. 2003 Mar 27;37(6):899-909
pubmed: 12670420
Curr Med Chem. 2003 Jun;10(12):1021-34
pubmed: 12678674
Science. 1992 Oct 9;258(5080):304-7
pubmed: 1411529
J Mol Neurosci. 2003;20(3):349-56
pubmed: 14501019
Arch Neurol. 2003 Dec;60(12):1685-91
pubmed: 14676042
Hum Mol Genet. 2004 Apr 1;13 Spec No 1:R123-6
pubmed: 14976159
J Biol Chem. 1992 Sep 5;267(25):18148-53
pubmed: 1517245
FASEB J. 2004 Aug;18(11):1288-90
pubmed: 15208260
J Neurosci. 2005 Jan 26;25(4):823-9
pubmed: 15673661
Nat Genet. 2006 Jan;38(1):24-6
pubmed: 16369530
Expert Opin Pharmacother. 2006 Jan;7(1):1-10
pubmed: 16370917
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):253-7
pubmed: 16381820
Am J Hum Genet. 2006 Jun;78(6):936-46
pubmed: 16685645
J Pharmacol Exp Ther. 2006 Aug;318(2):855-62
pubmed: 16690718
J Neurosci Res. 2006 Jul;84(1):106-18
pubmed: 16724341
Lancet. 1991 Jun 1;337(8753):1304-8
pubmed: 1674295
Neuron. 2006 Jul 6;51(1):29-42
pubmed: 16815330
J Biomol Screen. 2006 Aug;11(5):469-80
pubmed: 16928984
J Pharmacol Exp Ther. 2007 Jan;320(1):386-96
pubmed: 17003227
Science. 2006 Dec 22;314(5807):1903-8
pubmed: 17185597
J Neural Transm Suppl. 2006;(71):237-47
pubmed: 17447434
Curr Med Chem. 2007;14(27):2848-64
pubmed: 18045131
J Neurosci. 2008 Jan 2;28(1):3-9
pubmed: 18171917
Neuron. 2008 Jul 10;59(1):43-55
pubmed: 18614028
Neurotherapeutics. 2008 Jul;5(3):421-32
pubmed: 18625454
Lancet Neurol. 2008 Sep;7(9):779-86
pubmed: 18672400
Brain Res. 2008 Oct 27;1237:75-83
pubmed: 18723004
PLoS One. 2009 Jul 01;4(7):e6115
pubmed: 19568430
RNA. 2010 Jan;16(1):154-69
pubmed: 19939970
J Neurochem. 2010 Mar;112(5):1190-8
pubmed: 20002294
J Biol Chem. 2010 Oct 8;285(41):31217-32
pubmed: 20558735
Cell. 2010 Sep 17;142(6):857-67
pubmed: 20817278
J Neurodev Disord. 2010 Sep;2(3):133-43
pubmed: 20824191
J Alzheimers Dis. 2010;22(4):1201-8
pubmed: 20930279
J Neural Transm (Vienna). 2011 Mar;118(3):493-507
pubmed: 21221670
J Neurochem. 2012 Jan;120 Suppl 1:22-33
pubmed: 22122190
Nat Med. 2012 Jan 29;18(2):291-5
pubmed: 22286308
J Alzheimers Dis. 2012;30(1):167-82
pubmed: 22406440
Biochim Biophys Acta. 2012 Sep;1823(9):1468-83
pubmed: 22610083
J Neurol Neurosurg Psychiatry. 2012 Sep;83(9):894-902
pubmed: 22791904
J Neurochem. 2013 Apr;125(1):89-101
pubmed: 23350672
Cell Metab. 2013 Feb 5;17(2):282-90
pubmed: 23395174
J Alzheimers Dis. 2013;35(3):541-52
pubmed: 23478311
PLoS One. 2013 Jul 31;8(7):e65978
pubmed: 23935819
Antioxid Redox Signal. 2014 Jul 20;21(3):471-84
pubmed: 24512387
Biochem Pharmacol. 2014 Apr 15;88(4):486-94
pubmed: 24513321
J Pineal Res. 2014 May;56(4):343-70
pubmed: 24628077
Nucleic Acids Res. 2014 Jun;42(10):6567-77
pubmed: 24728987
PLoS One. 2014 Apr 16;9(4):e93716
pubmed: 24740291
Cell. 1989 Aug 25;58(4):615-22
pubmed: 2475254
Front Pharmacol. 2014 Apr 04;5:66
pubmed: 24772084
EMBO Rep. 2014 Jul;15(7):809-15
pubmed: 24867889
J Alzheimers Dis. 2014;42(2):679-90
pubmed: 24916541
PLoS Med. 2014 Oct 07;11(10):e1001739
pubmed: 25291378
Free Radic Biol Med. 2015 Aug;85:71-82
pubmed: 25841783
J Alzheimers Dis. 2015;46(4):971-82
pubmed: 25881909
Curr Epidemiol Rep. 2015 Jun;2(2):143-148
pubmed: 26046010
Neurodegener Dis. 2016;16(1-2):95-110
pubmed: 26606130
Environ Toxicol. 2017 Feb;32(2):619-629
pubmed: 27028940
Hum Mol Genet. 2016 Jun 15;25(12):2417-2436
pubmed: 27056979
J Neurochem. 2016 Aug;138(3):479-94
pubmed: 27206843
F1000Res. 2016 May 12;5:null
pubmed: 27239286
J Neurol. 2017 Apr;264(4):804-813
pubmed: 27778163
BMC Pharmacol Toxicol. 2016 Nov 4;17(1):57
pubmed: 27814772
Front Aging Neurosci. 2016 Dec 20;8:308
pubmed: 28066232
Neurosci Lett. 1989 Jul 31;102(2-3):325-31
pubmed: 2812509
Oxid Med Cell Longev. 2017;2017:1020357
pubmed: 28191272
Acta Neuropathol Commun. 2017 Jun 28;5(1):53
pubmed: 28659169
J Biol Chem. 2017 Sep 22;292(38):15976-15989
pubmed: 28768766
Aging Dis. 2017 Jul 21;8(4):458-470
pubmed: 28840060
J Neurol Sci. 2017 Sep 15;380:164-171
pubmed: 28870559
Redox Biol. 2018 Apr;14:100-115
pubmed: 28888202
Cell. 2017 Oct 5;171(2):273-285
pubmed: 28985560
Antioxid Redox Signal. 2018 May 1;28(13):1224-1237
pubmed: 29113455
Cell Mol Neurobiol. 2018 May;38(4):941-954
pubmed: 29177638
Alzheimers Dement (N Y). 2018 Jan 18;4:37-45
pubmed: 29955650
Front Neurosci. 2018 Jul 10;12:466
pubmed: 30042655
Front Neurosci. 2018 Aug 13;12:533
pubmed: 30150923
J Neurochem. 2018 Dec;147(6):831-848
pubmed: 30152072
Mol Psychiatry. 2019 Mar;24(3):345-363
pubmed: 30470799
Exp Neurol. 1994 Sep;129(1):112-9
pubmed: 7925833
J Neurosci. 1994 Sep;14(9):5461-70
pubmed: 8083748
Prog Neuropsychopharmacol Biol Psychiatry. 1993 Jan;17(1):139-50
pubmed: 8416600
Neurochem Res. 1998 May;23(5):807-14
pubmed: 9566621

Auteurs

Jack T Rogers (JT)

Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA. Jack.Rogers@mgh.harvard.edu.

Ning Xia (N)

Molecular Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA. NXIA@mgh.harvard.edu.

Angela Wong (A)

Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA. awfy@bu.edu.

Rachit Bakshi (R)

Molecular Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA. RBAKSHI1@mgh.harvard.edu.

Catherine M Cahill (CM)

Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA. CCahill@helix.mgh.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH