TFEB-driven lysosomal biogenesis is pivotal for PGC1α-dependent renal stress resistance.
Acute Kidney Injury
/ chemically induced
Animals
Autophagy
/ drug effects
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
/ metabolism
CRISPR-Cas Systems
Cisplatin
/ toxicity
Gene Transfer Techniques
Kidney Tubules
/ cytology
Lysosomes
/ metabolism
Mice
Mice, Knockout
Mice, Transgenic
Mitochondria
/ metabolism
Mitophagy
/ genetics
NAD
/ metabolism
Organelle Biogenesis
Oxidative Stress
/ genetics
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
/ genetics
Sequence Analysis, RNA
Mitochondria
Nephrology
Journal
JCI insight
ISSN: 2379-3708
Titre abrégé: JCI Insight
Pays: United States
ID NLM: 101676073
Informations de publication
Date de publication:
14 03 2019
14 03 2019
Historique:
entrez:
15
3
2019
pubmed:
15
3
2019
medline:
17
9
2020
Statut:
epublish
Résumé
Because injured mitochondria can accelerate cell death through the elaboration of oxidative free radicals and other mediators, it is striking that proliferator gamma coactivator 1-alpha (PGC1α), a stimulator of increased mitochondrial abundance, protects stressed renal cells instead of potentiating injury. Here we report that PGC1α's induction of lysosomes via transcription factor EB (TFEB) may be pivotal for kidney protection. CRISPR and stable gene transfer showed that PGC1α knockout tubular cells were sensitized to the genotoxic stressor cisplatin whereas transgenic cells were protected. The biosensor mtKeima unexpectedly revealed that cisplatin blunts mitophagy both in cells and mice. PGC1α not only counteracted this effect but also raised basal mitophagy, as did the downstream mediator nicotinamide adenine dinucleotide (NAD+). PGC1α did not consistently affect known autophagy pathways modulated by cisplatin. Instead RNA sequencing identified coordinated regulation of lysosomal biogenesis via TFEB. This effector pathway was sufficiently important that inhibition of TFEB or lysosomes unveiled a striking harmful effect of excess PGC1α in cells and conditional mice. These results uncover an unexpected effect of cisplatin on mitophagy and PGC1α's exquisite reliance on lysosomes for kidney protection. Finally, the data illuminate TFEB as a novel target for renal tubular stress resistance.
Identifiants
pubmed: 30870143
pii: 126749
doi: 10.1172/jci.insight.126749
pmc: PMC6538327
doi:
pii:
Substances chimiques
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
0
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
0
Ppargc1a protein, mouse
0
Tcfeb protein, mouse
0
NAD
0U46U6E8UK
Cisplatin
Q20Q21Q62J
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK095072
Pays : United States
Organisme : NIDDK NIH HHS
ID : K01 DK099473
Pays : United States
Organisme : NHLBI NIH HHS
ID : R35 HL139424
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG027002
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK114809
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Cell. 1999 Jul 9;98(1):115-24
pubmed: 10412986
Cell. 2004 Oct 1;119(1):121-35
pubmed: 15454086
Cell. 2005 Feb 25;120(4):483-95
pubmed: 15734681
Nature. 2005 Mar 3;434(7029):113-8
pubmed: 15744310
Stat Appl Genet Mol Biol. 2004;3:Article3
pubmed: 16646809
Cell. 2006 Oct 20;127(2):397-408
pubmed: 17055439
Am J Physiol Renal Physiol. 2008 Apr;294(4):F777-87
pubmed: 18256309
Nature. 2008 Feb 21;451(7181):1008-12
pubmed: 18288196
Kidney Int. 2008 Sep;74(5):631-40
pubmed: 18509315
J Clin Invest. 2009 May;119(5):1275-85
pubmed: 19349686
Science. 2009 Jul 24;325(5939):473-7
pubmed: 19556463
PLoS One. 2009 Aug 06;4(8):e6529
pubmed: 19657394
Cell Metab. 2011 Apr 6;13(4):450-460
pubmed: 21459329
Nature. 2011 Apr 28;472(7344):476-80
pubmed: 21525932
Science. 2011 Jun 17;332(6036):1429-33
pubmed: 21617040
Hum Mol Genet. 2011 Oct 1;20(19):3852-66
pubmed: 21752829
Chem Biol. 2011 Aug 26;18(8):1042-52
pubmed: 21867919
J Clin Invest. 2011 Oct;121(10):4003-14
pubmed: 21881206
Free Radic Biol Med. 2012 Jan 15;52(2):497-506
pubmed: 22120494
J Histochem Cytochem. 2012 Jul;60(7):521-9
pubmed: 22511597
Nature. 2012 May 09;485(7398):333-8
pubmed: 22596155
Sci Transl Med. 2012 Jul 11;4(142):142ra97
pubmed: 22786682
Kidney Int. 2012 Dec;82(12):1271-83
pubmed: 22854643
Am J Physiol Renal Physiol. 2012 Oct 15;303(8):F1239-50
pubmed: 22896037
Nat Cell Biol. 2013 Jun;15(6):647-58
pubmed: 23604321
Nat Rev Mol Cell Biol. 2013 May;14(5):283-96
pubmed: 23609508
Cell. 2013 Jul 18;154(2):430-41
pubmed: 23870130
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
Nat Methods. 2014 Aug;11(8):783-784
pubmed: 25075903
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4878-86
pubmed: 25349415
Nature. 2014 Nov 20;515(7527):431-435
pubmed: 25383517
Nat Med. 2015 Jan;21(1):37-46
pubmed: 25419705
J Am Soc Nephrol. 2016 Feb;27(2):439-53
pubmed: 26054542
Am J Kidney Dis. 2015 Nov;66(5):e35-6
pubmed: 26498420
Mol Cell. 2015 Nov 19;60(4):685-96
pubmed: 26549682
Nat Rev Nephrol. 2016 May;12(5):267-80
pubmed: 26804019
Sci Rep. 2016 Feb 26;6:22171
pubmed: 26916346
Nature. 2016 Mar 24;531(7595):528-32
pubmed: 26982719
Semin Nephrol. 2016 May;36(3):174-88
pubmed: 27339383
Cell. 2016 Oct 6;167(2):457-470.e13
pubmed: 27667687
Exp Cell Res. 2017 Jan 15;350(2):390-397
pubmed: 28024839
Oncotarget. 2017 Mar 28;8(13):20988-21000
pubmed: 28423497
Nat Protoc. 2017 Aug;12(8):1576-1587
pubmed: 28703790
J Am Soc Nephrol. 2017 Nov;28(11):3312-3322
pubmed: 28751525
Nat Rev Mol Cell Biol. 2018 Feb;19(2):109-120
pubmed: 29165426
Nat Med. 2018 Sep;24(9):1351-1359
pubmed: 30127395
Tohoku J Exp Med. 2018;246(1):1-8
pubmed: 30175722
Cell Death Dis. 2018 Nov 1;9(11):1113
pubmed: 30385753
Cell. 1998 Mar 20;92(6):829-39
pubmed: 9529258