Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail,
Animals
Biological Variation, Population
/ physiology
Biosynthetic Pathways
/ physiology
Chromatography, Liquid
/ methods
Computational Biology
Conotoxins
/ biosynthesis
Conus Snail
/ physiology
DNA, Complementary
/ genetics
Gene Expression Profiling
/ methods
Gene Expression Regulation
/ physiology
Predatory Behavior
/ physiology
Proteome
/ physiology
Proteomics
/ methods
Sequence Analysis, DNA
Spectrometry, Mass, Electrospray Ionization
/ methods
Transcriptome
/ physiology
454 sequencing
Conus imperialis
cone snail venom
conopeptide
conotoxin
iTRAQ
mass spectrometry
proteomics
transcriptomics
venom transcriptome
Journal
Marine drugs
ISSN: 1660-3397
Titre abrégé: Mar Drugs
Pays: Switzerland
ID NLM: 101213729
Informations de publication
Date de publication:
19 Mar 2019
19 Mar 2019
Historique:
received:
05
02
2019
revised:
12
03
2019
accepted:
14
03
2019
entrez:
22
3
2019
pubmed:
22
3
2019
medline:
16
7
2019
Statut:
epublish
Résumé
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of
Identifiants
pubmed: 30893765
pii: md17030177
doi: 10.3390/md17030177
pmc: PMC6471084
pii:
doi:
Substances chimiques
Conotoxins
0
DNA, Complementary
0
Proteome
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Health and Medical Research Council
ID : APP1072113
Références
Evolution. 2000 Apr;54(2):567-73
pubmed: 10937233
J Biol Chem. 2003 Jan 10;278(2):757-64
pubmed: 12384509
J Neurochem. 2003 May;85(3):610-21
pubmed: 12694387
J Mol Biol. 2004 Jul 16;340(4):783-95
pubmed: 15223320
Anal Biochem. 2004 Oct 1;333(1):174-81
pubmed: 15351294
J Exp Biol. 2005 Aug;208(Pt 15):2873-83
pubmed: 16043592
J Exp Bot. 2006;57(7):1501-8
pubmed: 16574745
Toxicon. 2009 Mar 1;53(3):349-59
pubmed: 19103215
Biochemistry. 2009 May 5;48(17):3717-29
pubmed: 19275168
J Proteomics. 2009 Mar 6;72(2):210-8
pubmed: 19457347
Toxicon. 2010 Jul;55(8):1453-62
pubmed: 20206197
Toxicon. 2010 Jul;55(8):1491-509
pubmed: 20211197
BMC Genomics. 2010 Jul 28;11:452
pubmed: 20663230
J Exp Biol. 2011 Jan 1;214(Pt 1):147-61
pubmed: 21147978
Nat Biotechnol. 2011 May 15;29(7):644-52
pubmed: 21572440
Nucleic Acids Res. 2012 Jan;40(Database issue):D325-30
pubmed: 22058133
PLoS One. 2011;6(12):e28173
pubmed: 22174776
J Biol Chem. 2012 Apr 27;287(18):14973-83
pubmed: 22399292
Pharmacol Rev. 2012 Apr;64(2):259-98
pubmed: 22407615
Nat Rev Genet. 2012 Mar 13;13(4):227-32
pubmed: 22411467
Toxicon. 2012 Nov;60(6):982-9
pubmed: 22781954
J Insect Physiol. 2013 Feb;59(2):205-12
pubmed: 23103980
Mol Cell Proteomics. 2013 Feb;12(2):312-29
pubmed: 23152539
J Proteomics. 2013 Jul 11;87:103-21
pubmed: 23727490
PLoS Negl Trop Dis. 2013 Aug 22;7(8):e2394
pubmed: 23991242
Mol Cell Proteomics. 2013 Dec;12(12):3824-33
pubmed: 24043424
BMC Genomics. 2013 Oct 16;14:708
pubmed: 24131469
J Proteomics. 2014 Mar 17;99:68-83
pubmed: 24463169
Nat Commun. 2014 Mar 24;5:3521
pubmed: 24662800
Toxicon. 2014 Dec;91:135-44
pubmed: 25301479
BMC Genomics. 2014 Dec 03;15:1061
pubmed: 25476704
Bioinformatics. 2015 Nov 1;31(21):3421-8
pubmed: 26177965
Mar Drugs. 2019 Jan 21;17(1):null
pubmed: 30669642
Toxicon. 1986;24(10):995-1000
pubmed: 3824406
Toxicon. 1973 Jul;11(4):325-31
pubmed: 4751111
Science. 1968 Mar 29;159(3822):1478-9
pubmed: 5732489
J Biol Chem. 1995 Sep 22;270(38):22361-7
pubmed: 7673220
Toxicon. 1994 Jul;32(7):845-8
pubmed: 7940591
J Biol Chem. 1994 Jun 17;269(24):16733-9
pubmed: 8206995
Toxicon. 1999 Jan;37(1):217-21
pubmed: 9920493