Type IV pili: dynamics, biophysics and functional consequences.
Journal
Nature reviews. Microbiology
ISSN: 1740-1534
Titre abrégé: Nat Rev Microbiol
Pays: England
ID NLM: 101190261
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
pubmed:
17
4
2019
medline:
4
3
2020
entrez:
17
4
2019
Statut:
ppublish
Résumé
The surfaces of many bacteria are decorated with long, exquisitely thin appendages called type IV pili (T4P), dynamic filaments that are rapidly polymerized and depolymerized from a pool of pilin subunits. Cycles of pilus extension, binding and retraction enable T4P to perform a phenomenally diverse array of functions, including twitching motility, DNA uptake and microcolony formation. On the basis of recent developments, a comprehensive understanding is emerging of the molecular architecture of the T4P machinery and the filament it builds, providing mechanistic insights into the assembly and retraction processes. Combined microbiological and biophysical approaches have revealed how T4P dynamics influence self-organization of bacteria, how bacteria respond to external stimuli to regulate T4P activity for directed movement, and the role of T4P retraction in surface sensing. In this Review, we discuss the T4P machine architecture and filament structure and present current molecular models for T4P dynamics, with a particular focus on recent insights into T4P retraction. We also discuss the functional consequences of T4P dynamics, which have important implications for bacterial lifestyle and pathogenesis.
Identifiants
pubmed: 30988511
doi: 10.1038/s41579-019-0195-4
pii: 10.1038/s41579-019-0195-4
doi:
Substances chimiques
Type IV Secretion Systems
0
Fimbriae Proteins
147680-16-8
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
429-440Références
Hospenthal, M. K., Costa, T. R. D. & Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365–379 (2017).
pubmed: 28496159
Giltner, C. L., Nguyen, Y. & Burrows, L. L. Type IV pilin proteins: versatile molecular modules. Microbiol. Mol. Biol. Rev. 76, 740–772 (2012).
pubmed: 23204365
pmcid: 3510520
Clausen, M., Koomey, M. & Maier, B. Dynamics of type IV pili is controlled by switching between multiple states. Biophys. J. 96, 1169–1177 (2009).
pubmed: 19186152
pmcid: 2716576
Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).
pubmed: 10993081
Skerker, J. M. & Berg, H. C. Direct observation of extension and retraction of type IV pili. Proc. Natl Acad. Sci. USA 98, 6901–6904 (2001).
pubmed: 11381130
Maier, B. et al. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).
pubmed: 12446837
Ellison, C. K. et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 358, 535–538 (2017). This paper shows that surface binding by the T4P stops retraction, which signals production of the C. crescentus holdfast, and that retraction can be blocked by sterically obstructing passage of the pilus through the secretin channel.
pubmed: 29074778
pmcid: 5805138
Biais, N., Ladoux, B., Higashi, D., So, M. & Sheetz, M. Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLOS Biol. 6, e87 (2008).
pubmed: 18416602
pmcid: 2292754
Ribbe, J., Baker, A. E., Euler, S., O’Toole, G. A. & Maier, B. Role of cyclic Di-GMP and exopolysaccharide in type IV pilus dynamics. J. Bacteriol. 199, e00859–16 (2017).
pubmed: 28167523
pmcid: 5370421
Chamot-Rooke, J. et al. Posttranslational modification of pili upon cell contact triggers N. meningitidis dissemination. Science 331, 778–782 (2011).
pubmed: 21311024
Higashi, D. L. et al. Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect. Immun. 75, 4743–4753 (2007).
pubmed: 17682045
pmcid: 2044525
Howie, H. L., Glogauer, M. & So, M. The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLOS Biol. 3, e100 (2005).
pubmed: 15769184
pmcid: 1065265
Holz, C. et al. Multiple pilus motors cooperate for persistent bacterial movement in two dimensions. Phys. Rev. Lett. 104, 178104 (2010).
pubmed: 20482147
Opitz, D. & Maier, B. Rapid cytoskeletal response of epithelial cells to force generation by type IV pili. PLOS ONE 6, e17088 (2011).
pubmed: 21340023
pmcid: 3038865
Ellison, C. K. et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat. Microbiol. 3, 773–780 (2018). This study shows that, during transformation, T4P bring extracellular DNA to the cell surface by retraction.
pubmed: 29891864
Clausen, M., Jakovljevic, V., Søgaard-Andersen, L. & Maier, B. High-force generation is a conserved property of type IV pilus systems. J. Bacteriol. 191, 4633–4638 (2009).
pubmed: 19429611
pmcid: 2704717
Biais, N., Higashi, D. L., Brujic, J., So, M. & Sheetz, M. P. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc. Natl Acad. Sci. USA 107, 11358–11363 (2010).
pubmed: 20534431
Parge, H. E. et al. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378, 32–38 (1995).
pubmed: 7477282
Craig, L. et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell 11, 1139–1150 (2003).
pubmed: 12769840
Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).
pubmed: 16949362
Hartung, S. et al. Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential. J. Biol. Chem. 286, 44254–44265 (2011).
pubmed: 22027840
pmcid: 3243539
Reardon, P. N. & Mueller, K. T. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J. Biol. Chem. 288, 29260–29266 (2013).
pubmed: 23965997
pmcid: 3795228
Strom, M. S. & Lory, S. Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J. Biol. Chem. 266, 1656–1664 (1991).
pubmed: 1671038
Horiuchi, T. & Komano, T. Mutational analysis of plasmid R64 thin pilus prepilin: the entire prepilin sequence is required for processing by type IV prepilin peptidase. J. Bacteriol. 180, 4613–4620 (1998).
pubmed: 9721303
pmcid: 107475
Aas, F. E. et al. Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions. Mol. Microbiol. 63, 69–85 (2007).
pubmed: 17140412
Li, J., Egelman, E. H. & Craig, L. Structure of the Vibrio cholerae type IVb pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J. Mol. Biol. 418, 47–64 (2012).
pubmed: 22361030
pmcid: 3389824
Nivaskumar, M. et al. Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol. Microbiol. 101, 924–941 (2016).
pubmed: 27260845
Egelman, E. H. Three-dimensional reconstruction of helical polymers. Arch. Biochem. Biophys. 581, 54–58 (2015).
pubmed: 25912526
pmcid: 4543434
Smith, M. T. J. & Rubinstein, J. L. Beyond blob-ology. Science 345, 617–619 (2014).
pubmed: 25104368
Wang, F. et al. Cryoelectron microscopy reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae type IV pili at sub-nanometer resolution. Structure 25, 1423–1435 (2017).
pubmed: 28877506
Kolappan, S. et al. Structure of the Neisseria meningitidis type IV pilus. Nat. Commun. 7, 13015 (2016).
pubmed: 27698424
pmcid: 5059446
Beaussart, A. et al. Nanoscale adhesion forces of Pseudomonas aeruginosa type IV Pili. ACS Nano 8, 10723–10733 (2014).
pubmed: 25286300
pmcid: 4212785
Brissac, T., Mikaty, G., Duménil, G., Coureuil, M. & Nassif, X. The meningococcal minor pilin PilX is responsible for type IV pilus conformational changes associated with signaling to endothelial cells. Infect. Immun. 80, 3297–3306 (2012).
pubmed: 22778100
pmcid: 3418752
Pelicic, V. Type IV pili: e pluribus unum? Mol. Microbiol. 68, 827–837 (2008).
pubmed: 18399938
Ayers, M., Howell, P. L. & Burrows, L. L. Architecture of the type II secretion and type IV pilus machineries. Future Microbiol. 5, 1203–1218 (2010).
pubmed: 20722599
Ng, D. et al. The Vibrio cholerae minor pilin TcpB initiates assembly and retraction of the toxin-coregulated pilus. PLOS Pathog. 12, e1006109 (2016). The study demonstrates functional retraction in the absence of a retraction ATPase.
pubmed: 27992883
pmcid: 5207764
Nguyen, Y. et al. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J. Biol. Chem. 290, 601–611 (2015).
pubmed: 25389296
Giltner, C. L., Habash, M. & Burrows, L. L. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J. Mol. Biol. 398, 444–461 (2010).
pubmed: 20338182
Helaine, S., Dyer, D. H., Nassif, X., Pelicic, V. & Forest, K. T. 3D structure/function analysis of PilX reveals how minor pilins can modulate the virulence properties of type IV pili. Proc. Natl Acad. Sci. USA 104, 15888–15893 (2007).
pubmed: 17893339
Chang, Y.-W. et al. Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography. Nat. Microbiol. 2, 16269 (2017).
pubmed: 28165453
pmcid: 5302817
Chang, Y.-W. et al. Architecture of the type IVa pilus machine. Science 351, aad2001 (2016). The study provides a comprehensive view of the intact T4P machine in the bacterial envelope.
pubmed: 26965631
pmcid: 5929464
Gold, V. A. M., Salzer, R., Averhoff, B. & Kühlbrandt, W. Structure of a type IV pilus machinery in the open and closed state. eLife 4, e07380 (2015).
pmcid: 4463427
Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).
pubmed: 11226268
Misic, A. M., Satyshur, K. A. & Forest, K. T. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. J. Mol. Biol. 400, 1011–1021 (2010).
pubmed: 20595000
pmcid: 2918248
McCallum, M., Tammam, S., Khan, A., Burrows, L. L. & Howell, P. L. The molecular mechanism of the type IVa pilus motors. Nat. Commun. 8, 15091 (2017). ADP and ATP-analogue-bound PilB structures provide the basis for a model of nucleotide turnover in sequential subunits, leading to clockwise ring conformational deformation in the assembly ATPase and anticlockwise deformation in the disassembly ATPase.
pubmed: 28474682
pmcid: 5424180
Mancl, J. M., Black, W. P., Robinson, H., Yang, Z. & Schubot, F. D. Crystal structure of a type IV pilus assembly ATPase: insights into the molecular mechanism of PilB from thermus thermophilus. Structure 24, 1886–1897 (2016). This first structure of a T4P assembly ATPase reveals structural similarity in the motor mechanism to that of the retraction ATPases and highlights the two-fold symmetry of the oblong hexamer and likely force generation.
pubmed: 27667690
Satyshur, K. A. et al. Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15, 363–376 (2007).
pubmed: 17355871
pmcid: 1978094
Collins, R. et al. Structural cycle of the Thermus thermophilus PilF ATPase: the powering of type IVa pilus assembly. Sci. Rep. 8, 14022 (2018). Single-particle electron microscopy reconstructions provide a model for how GSPII domains interact with the NTD and CTD in an assembly ATPase hexamer and highlight the ATP-dependent vertical shift of motor subunits, which likely have a role in pilus assembly.
pubmed: 30232337
pmcid: 6145873
Solanki, V., Kapoor, S. & Thakur, K. G. Structural insights into the mechanism of Type IVa pilus extension and retraction ATPase motors. FEBS J. 285, 3402–3421 (2018).
pubmed: 30066435
Marathe, R. et al. Bacterial twitching motility is coordinated by a two-dimensional tug-of-war with directional memory. Nat. Commun. 5, 3759 (2014).
pubmed: 24806757
Finer, J. T., Simmons, R. M. & Spudich, J. A. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368, 113 (1994).
pubmed: 8139653
Seitz, P. & Blokesch, M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc. Natl Acad. Sci. USA 110, 17987–17992 (2013).
pubmed: 24127573
Wolfgang, M. et al. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol. Microbiol. 29, 321–330 (1998).
pubmed: 9701824
Chiang, P. et al. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology 154, 114–126 (2008).
pubmed: 18174131
Wu, S. S., Wu, J. & Kaiser, D. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23, 109–121 (1997).
pubmed: 9004225
Zöllner, R., Cronenberg, T. & Maier, B. Motor properties of PilT-independent type 4 pilus retraction in gonococci. J. Bacteriol. https://doi.org/10.1128/JB.00778-18 (2019).
doi: 10.1128/JB.00778-18
pubmed: 30692169
Kolappan, S., Ng, D., Yang, G., Harn, T. & Craig, L. Crystal structure of the minor pilin CofB, the initiator of CFA/III pilus assembly in enterotoxigenic Escherichia coli. J. Biol. Chem. 290, 25805–25818 (2015).
pubmed: 26324721
pmcid: 4646235
Dietrich, M., Mollenkopf, H., So, M. & Friedrich, A. Pilin regulation in the pilT mutant of Neisseria gonorrhoeae strain MS11. FEMS Microbiol. Lett. 296, 248–256 (2009).
pubmed: 19486161
pmcid: 4428587
Kilmury, S. L. N. & Burrows, L. L. Type IV pilins regulate their own expression via direct intramembrane interactions with the sensor kinase PilS. Proc. Natl Acad. Sci. USA 113, 6017–6022 (2016).
pubmed: 27162347
Persat, A., Inclan, Y. F., Engel, J. N., Stone, H. A. & Gitai, Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 112, 7563–7568 (2015).
pubmed: 26041805
Inclan, Y. F. et al. A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa. Mol. Microbiol. 101, 590–605 (2016).
pubmed: 27145134
pmcid: 4980298
Lee, C. K. et al. Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc. Natl Acad. Sci. USA 115, 4471–4476 (2018).
pubmed: 29559526
O’Toole, G. A. & Wong, G. C. Sensational biofilms: surface sensing in bacteria. Curr. Opin. Microbiol. 30, 139–146 (2016).
pubmed: 26968016
pmcid: 4843124
Schuergers, N. et al. Cyanobacteria use micro-optics to sense light direction. eLife 5, e12620 (2016).
pubmed: 26858197
pmcid: 4758948
Nakane, D. & Nishizaka, T. Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria. Proc. Natl Acad. Sci. USA 114, 6593–6598 (2017).
pubmed: 28584115
Oliveira, N. M., Foster, K. R. & Durham, W. M. Single-cell twitching chemotaxis in developing biofilms. Proc. Natl Acad. Sci. USA 113, 6532–6537 (2016).
pubmed: 27222583
Chau, R. M. W., Bhaya, D. & Huang, K. C. Emergent phototactic responses of cyanobacteria under complex light regimes. mBio 8, e02330–16 (2017).
pubmed: 28270586
pmcid: 5340875
Wilde, A. & Mullineaux, C. W. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol. Rev. 41, 900–922 (2017).
pubmed: 29077840
pmcid: 5812497
Schuergers, N., Nürnberg, D. J., Wallner, T., Mullineaux, C. W. & Wilde, A. PilB localization correlates with the direction of twitching motility in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 161, 960–966 (2015).
pubmed: 25721851
Welker, A. et al. Molecular motors govern liquidlike ordering and fusion dynamics of bacterial colonies. Phys. Rev. Lett. 121, 118102 (2018). This study shows that tuning T4P motor activity modulates local structure and viscosity of bacterial microcolonies.
pubmed: 30265121
Bonazzi, D. et al. Intermittent pili-mediated forces fluidize Neisseria meningitidis aggregates promoting vascular colonization. Cell 174, 143–155 (2018). This study reveals that T4P retraction enhances colony fluidity and demonstrates important consequences of T4P retraction for vascular colonization.
pubmed: 29779947
Pönisch, W., Weber, C. A., Juckeland, G., Biais, N. & Zaburdaev, V. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates. New J. Phys. 19, 015003 (2017).
Hockenberry, A. M., Hutchens, D. M., Agellon, A. & So, M. Attenuation of the type IV pilus retraction motor influences Neisseria gonorrhoeae social and infection behavior. mBio 7, e01994–16 (2016).
pubmed: 27923924
pmcid: 5142622
Zöllner, R. et al. Type IV pilin post-translational modifications modulate materials properties of bacterial colonies. Biophys. J. https://doi.org/10.1016/j.bpj.2019.01.020 (2019).
doi: 10.1016/j.bpj.2019.01.020
pubmed: 30739725
Rotman, E. & Seifert, H. S. The genetics of Neisseria species. Annu. Rev. Genet. 48, 405–431 (2014).
pubmed: 25251852
Gelimson, A. et al. Multicellular self-organization of P. aeruginosa due to interactions with secreted trails. Phys. Rev. Lett. 117, 178102 (2016).
pubmed: 27824438
Kranz, W. T., Gelimson, A., Zhao, K., Wong, G. C. L. & Golestanian, R. Effective dynamics of microorganisms that interact with their own trail. Phys. Rev. Lett. 117, 038101 (2016).
pubmed: 27472143
Zhao, K. et al. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497, 388–391 (2013).
pubmed: 23657259
pmcid: 4109411
Hu, W. et al. Interplay between type IV pili activity and exopolysaccharides secretion controls motility patterns in single cells of Myxococcus xanthus. Sci. Rep. 6, 17790 (2016).
pubmed: 26821939
pmcid: 4731782
Li, Y. et al. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 5443–5448 (2003).
pubmed: 12704238
Gloag, E. S. et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl Acad. Sci. USA 110, 11541–11546 (2013).
pubmed: 23798445
Zachreson, C. et al. Network patterns in exponentially growing two-dimensional biofilms. Phys. Rev. E 96, 042401 (2017).
pubmed: 29347525
Kim, W., Racimo, F., Schluter, J., Levy, S. B. & Foster, K. R. Importance of positioning for microbial evolution. Proc. Natl Acad. Sci. USA 111, E1639–E1647 (2014).
pubmed: 24715732
Smith, W. P. J. et al. Cell morphology drives spatial patterning in microbial communities. Proc. Natl Acad. Sci. USA 114, E280–E286 (2017).
pubmed: 28039436
Zöllner, R., Oldewurtel, E. R., Kouzel, N. & Maier, B. Phase and antigenic variation govern competition dynamics through positioning in bacterial colonies. Sci. Rep. 7, 12151 (2017).
pubmed: 28939833
pmcid: 5610331
Dong, J. J. & Klumpp, S. Simulation of colony pattern formation under differential adhesion and cell proliferation. Soft Matter 14, 1908–1916 (2018).
pubmed: 29468230
Oldewurtel, E. R., Kouzel, N., Dewenter, L., Henseler, K. & Maier, B. Differential interaction forces govern bacterial sorting in early biofilms. eLife 4, e10811 (2015).
pubmed: 26402455
pmcid: 4625442
Anyan, M. E. et al. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 111, 18013–18018 (2014).
pubmed: 25468980
Pönisch, W. et al. Pili mediated intercellular forces shape heterogeneous bacterial microcolonies prior to multicellular differentiation. Sci. Rep. 8, 16567 (2018).
pubmed: 30410109
pmcid: 6224386
Harris, A. K. Is cell sorting caused by differences in the work of intercellular adhesion? A critique of the Steinberg hypothesis. J. Theor. Biol. 61, 267–285 (1976).
pubmed: 985668
Klausen, M., Aaes-Jørgensen, A., Molin, S. & Tolker-Nielsen, T. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms: biofilm mushrooms with a twitch. Mol. Microbiol. 50, 61–68 (2003).
pubmed: 14507363
Kaplan, J. B. et al. Low levels of β-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio 3, e00198–12 (2012).
pubmed: 22851659
pmcid: 3419523
Matz, C., Bergfeld, T., Rice, S. A. & Kjelleberg, S. Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ. Microbiol. 6, 218–226 (2004).
pubmed: 14871206
Stingl, K., Müller, S., Scheidgen-Kleyboldt, G., Clausen, M. & Maier, B. Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc. Natl Acad. Sci. USA 107, 1184–1189 (2010).
pubmed: 20080542
Gangel, H. et al. Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLOS Pathog. 10, e1004043 (2014).
pubmed: 24763594
pmcid: 3999279
Hepp, C. & Maier, B. Bacterial translocation ratchets: shared physical principles with different molecular implementations: how bacterial secretion systems bias brownian motion for efficient translocation of macromolecules. Bioessays 39, 1700099 (2017).
Hepp, C. & Maier, B. Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc. Natl Acad. Sci. USA 113, 12467–12472 (2016).
pubmed: 27791096
Chen, I. & Dubnau, D. DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2, 241–249 (2004).
pubmed: 15083159
Cehovin, A. et al. Specific DNA recognition mediated by a type IV pilin. Proc. Natl Acad. Sci. USA 110, 3065–3070 (2013).
pubmed: 23386723
Laurenceau, R. et al. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae. PLOS Pathog. 9, e1003473 (2013).
pubmed: 23825953
pmcid: 3694846
Chen, I., Provvedi, R. & Dubnau, D. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J. Biol. Chem. 281, 21720–21727 (2006).
pubmed: 16751195
Obergfell, K. P. & Seifert, H. S. The pilin N-terminal domain maintains Neisseria gonorrhoeae transformation competence during pilus phase variation. PLOS Genet. 12, e1006069 (2016).
pubmed: 27213957
pmcid: 4877100
Hamilton, H. L. & Dillard, J. P. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination: Natural transformation of Neisseria gonorrhoeae. Mol. Microbiol. 59, 376–385 (2006).
pubmed: 16390436
Seitz, P. et al. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLOS Genet. 10, e1004066 (2014).
pubmed: 24391524
pmcid: 3879209
Peskin, C. S. & Oster, G. F. Force production by depolymerizing microtubules: load-velocity curves and run-pause statistics. Biophys. J. 69, 2268–2276 (1995).
pubmed: 8599634
pmcid: 1236465
Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).
pubmed: 11309111
Hager, A. J. et al. Type IV pili-mediated secretion modulates Francisella virulence. Mol. Microbiol. 62, 227–237 (2006).
pubmed: 16987180
Kirn, T. J., Bose, N. & Taylor, R. K. Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol. Microbiol. 49, 81–92 (2003).
pubmed: 12823812
Han, X., Kennan, R. M., Parker, D., Davies, J. K. & Rood, J. I. Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus. J. Bacteriol. 189, 5022–5033 (2007).
pubmed: 17513472
pmcid: 1951885
Yuen, A. S. W., Kolappan, S., Ng, D. & Craig, L. Structure and secretion of CofJ, a putative colonization factor of enterotoxigenic Escherichia coli. Mol. Microbiol. 90, 898–918 (2013).
pubmed: 24106767
Reichow, S. L. et al. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 5, 215–218 (2011).
Thomassin, J.-L., Santos Moreno, J., Guilvout, I., Tran Van Nhieu, G. & Francetic, O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol. Microbiol. 105, 211–226 (2017).
pubmed: 28486768
McLaughlin, L. S., Haft, R. J. F. & Forest, K. T. Structural insights into the Type II secretion nanomachine. Curr. Opin. Struct. Biol. 22, 208–216 (2012).
pubmed: 22425326
pmcid: 3341957
Korotkov, K. V., Sandkvist, M. & Hol, W. G. J. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat. Rev. Microbiol. 10, 336–351 (2012).
pubmed: 22466878
pmcid: 3705712
Maier, B. & Wong, G. C. L. How bacteria use type IV pili machinery on surfaces. Trends Microbiol. 23, 775–788 (2015).
pubmed: 26497940
Zaburdaev, V. et al. Uncovering the mechanism of trapping and cell orientation during Neisseria gonorrhoeae twitching motility. Biophys. J. 107, 1523–1531 (2014).
pubmed: 25296304
pmcid: 4190650
Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).
pubmed: 18307407
Anderson, M. T., Dewenter, L., Maier, B. & Seifert, H. S. Seminal plasma initiates a Neisseria gonorrhoeae transmission state. mBio 5, e01004–13 (2014).
pubmed: 24595372
pmcid: 3958800
Sabass, B., Koch, M. D., Liu, G., Stone, H. A. & Shaevitz, J. W. Force generation by groups of migrating bacteria. Proc. Natl Acad. Sci. USA 114, 7266–7271 (2017).
pubmed: 28655845
Schwarz, U. S. & Soiné, J. R. D. Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim. Biophys. Acta 1853, 3095–3104 (2015).
pubmed: 26026889
Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008).
pubmed: 17827246