Imputation Strategy for Reliable Regional MRI Morphological Measurements.
Big data
Brain segmentation
FreeSurfer
Imputation
Post-segmentation correction
Random forest
Journal
Neuroinformatics
ISSN: 1559-0089
Titre abrégé: Neuroinformatics
Pays: United States
ID NLM: 101142069
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
pubmed:
6
5
2019
medline:
21
10
2020
entrez:
5
5
2019
Statut:
ppublish
Résumé
Regional morphological analysis represents a crucial step in most neuroimaging studies. Results from brain segmentation techniques are intrinsically prone to certain degrees of variability, mainly as results of suboptimal segmentation. To reduce this inherent variability, the errors are often identified through visual inspection and then corrected (semi)manually. Identification and correction of incorrect segmentation could be very expensive for large-scale studies. While identification of the incorrect results can be done relatively fast even with manual inspection, the correction step is extremely time-consuming, as it requires training staff to perform laborious manual corrections. Here we frame the correction phase of this problem as a missing data problem. Instead of manually adjusting the segmentation outputs, our computational approach aims to derive accurate morphological measures by machine learning imputation. Data imputation techniques may be used to replace missing or incorrect region average values with carefully chosen imputed values, all of which are computed based on other available multivariate information. We examined our approach of correcting segmentation outputs on a cohort of 970 subjects, which were undergone an extensive, time-consuming, manual post-segmentation correction. A random forest imputation technique recovered the gold standard results with a significant accuracy (r = 0.93, p < 0.0001; when 30% of the segmentations were considered incorrect in a non-random fashion). The random forest technique proved to be most effective for big data studies (N > 250).
Identifiants
pubmed: 31054076
doi: 10.1007/s12021-019-09426-x
pii: 10.1007/s12021-019-09426-x
pmc: PMC6829024
mid: NIHMS1028326
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
59-70Subventions
Organisme : NIBIB NIH HHS
ID : P41 EB015922
Pays : United States
Organisme : NICHD NIH HHS
ID : R00 HD065832
Pays : United States
Organisme : NIBIB NIH HHS
ID : U54 EB020406
Pays : United States
Organisme : NIMHD NIH HHS
ID : R25 MD010397
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH094343
Pays : United States
Organisme : NINR NIH HHS
ID : P20 NR015331
Pays : United States
Organisme : NIMH NIH HHS
ID : K01 MH108761
Pays : United States
Organisme : NIDDK NIH HHS
ID : P30 DK089503
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG052350
Pays : United States
Références
PLoS One. 2012;7(9):e45081
pubmed: 23028771
J Magn Reson Imaging. 2008 Aug;28(2):308-19
pubmed: 18666143
Annu Rev Psychol. 2009;60:549-76
pubmed: 18652544
IEEE Trans Med Imaging. 1998 Feb;17(1):87-97
pubmed: 9617910
BMJ Open. 2013 Aug 01;3(8):
pubmed: 23906948
J Magn Reson Imaging. 2010 Jan;31(1):192-203
pubmed: 20027588
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11050-5
pubmed: 10984517
Neuroimage. 2006 Jul 1;31(3):968-80
pubmed: 16530430
Cereb Cortex. 2004 Jan;14(1):11-22
pubmed: 14654453
Hum Brain Mapp. 2016 Jun;37(6):2027-38
pubmed: 26946457
Neuroimage. 2018 Apr 15;170:182-198
pubmed: 28259781
Neuroimage. 2004;23 Suppl 1:S69-84
pubmed: 15501102
Front Neuroinform. 2009 Jul 20;3:22
pubmed: 19649168
Hum Brain Mapp. 2018 Jan;39(1):428-439
pubmed: 29080235
Neuroimage. 2014 Feb 1;86:544-53
pubmed: 23921101
Neuroimage. 2019 Apr 1;189:116-129
pubmed: 30633965
J Alzheimers Dis. 2015;48(4):1051-63
pubmed: 26444770
J Am Med Inform Assoc. 2015 Nov;22(6):1126-31
pubmed: 26198305
PLoS One. 2012;7(6):e38234
pubmed: 22675527
Brain Imaging Behav. 2019 Oct;13(5):1281-1291
pubmed: 30145718
Neuroimage. 2014 Oct 1;99:166-79
pubmed: 24879923
Neuroimage. 2012 Jul 16;61(4):1402-18
pubmed: 22430496
Sci Rep. 2017 May 25;7(1):2418
pubmed: 28546533
Bioinformatics. 2012 Jan 1;28(1):112-8
pubmed: 22039212
Am J Epidemiol. 2014 Mar 15;179(6):764-74
pubmed: 24589914
Neuroimage. 2009 Apr 15;45(3):855-66
pubmed: 19162198
Magn Reson Med. 2009 Aug;62(2):365-72
pubmed: 19526493
Psychol Addict Behav. 2015 Mar;29(1):231-6
pubmed: 25134022
Genes (Basel). 2012 Aug 30;3(3):545-75
pubmed: 23139896
Int J Methods Psychiatr Res. 2011 Mar;20(1):40-9
pubmed: 21499542
IEEE Trans Med Imaging. 2007 Apr;26(4):518-29
pubmed: 17427739
Neuroimage. 1999 Feb;9(2):179-94
pubmed: 9931268
PLoS One. 2010 Sep 28;5(9):
pubmed: 20927408
Neuroscientist. 2004 Aug;10(4):362-71
pubmed: 15271263
Neuroimage. 2018 May 15;172:217-227
pubmed: 29414494
Neuroimage. 2011 Jul 1;57(1):19-21
pubmed: 21376812
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):171-9
pubmed: 18982603
Neuroimage. 2010 Dec;53(4):1181-96
pubmed: 20637289
Neuroimage. 2016 Jan 1;124(Pt B):1115-1119
pubmed: 25840117
Stat Methods Med Res. 1999 Mar;8(1):3-15
pubmed: 10347857
Neuron. 2002 Jan 31;33(3):341-55
pubmed: 11832223
J Mach Learn Res. 2010 Mar 1;11:2287-2322
pubmed: 21552465
IEEE Trans Med Imaging. 2008 Apr;27(4):425-41
pubmed: 18390341
Neuroimage. 1999 Feb;9(2):195-207
pubmed: 9931269
Neuroimage. 2012 Aug 15;62(2):774-81
pubmed: 22248573
Acad Radiol. 2012 Jul;19(7):785-93
pubmed: 22503890
Hum Brain Mapp. 2006 Apr;27(4):314-24
pubmed: 16124013
Neuroimage. 2004 Jul;22(3):1060-75
pubmed: 15219578