Helping GPs to extrapolate guideline recommendations to patients for whom there are no explicit recommendations, through the visualization of drug properties. The example of AntibioHelp® in bacterial diseases.
Adult
Aged
Anti-Bacterial Agents
/ therapeutic use
Attitude of Health Personnel
Bacterial Infections
/ drug therapy
Cross-Over Studies
Data Display
Decision Support Systems, Clinical
Evidence-Based Medicine
Female
General Practitioners
Humans
Male
Medication Errors
/ prevention & control
Middle Aged
Practice Guidelines as Topic
Practice Patterns, Physicians'
User-Computer Interface
antibiotics
clinical decision support system
clinical practice guidelines
infectious diseases
primary care
visualization
Journal
Journal of the American Medical Informatics Association : JAMIA
ISSN: 1527-974X
Titre abrégé: J Am Med Inform Assoc
Pays: England
ID NLM: 9430800
Informations de publication
Date de publication:
01 10 2019
01 10 2019
Historique:
received:
13
11
2018
revised:
10
03
2019
accepted:
10
04
2019
pubmed:
12
5
2019
medline:
2
2
2021
entrez:
12
5
2019
Statut:
ppublish
Résumé
Clinical decision support systems (CDSS) implementing clinical practice guidelines (CPGs) have 2 main limitations: they target only patients for whom CPGs provide explicit recommendations, and their rationale may be difficult to understand. These 2 limitations result in poor CDSS adoption. We designed AntibioHelp® as a CDSS for antibiotic treatment. It displays the recommended and nonrecommended antibiotics, together with their properties, weighted by degree of importance as outlined in the CPGs. The aim of this study was to determine whether AntibioHelp® could increase the confidence of general practitioners (GPs) in CPG recommendations and help them to extrapolate guidelines to patients for whom CPGs provide no explicit recommendations. We carried out a 2-stage crossover study in which GPs responded to clinical cases using CPG recommendations either alone or with explanations displayed through AntibioHelp®. We compared error rates, confidence levels, and response times. We included 64 GPs. When no explicit recommendation existed for a particular situation, AntibioHelp® significantly decreased the error rate (-41%, P value = 6x10-13), and significantly increased GP confidence (+8%, P value = .02). This CDSS was considered to be usable by GPs (SUS score = 64), despite a longer interaction time (+9-22 seconds). By contrast, AntibioHelp® had no significant effect if there was an explicit recommendation. The visualization of weighted antibiotic properties helps GPs to extrapolate recommendations to patients for whom CPGs provide no explicit recommendations. It also increases GP confidence in their prescriptions for these patients. Further evaluations are required to determine the impact of AntibioHelp® on antibiotic prescriptions in real clinical practice.
Identifiants
pubmed: 31077275
pii: 5488097
doi: 10.1093/jamia/ocz057
pmc: PMC7647204
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1010-1019Informations de copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Références
Fam Pract. 2007 Oct;24(5):427-34
pubmed: 17728289
Clin Microbiol Infect. 2017 Aug;23(8):524-532
pubmed: 28268133
JAMA. 2016 May 3;315(17):1864-73
pubmed: 27139059
Clin Infect Dis. 2011 Mar 1;52(5):e103-20
pubmed: 21292654
JAMA. 1999 Oct 20;282(15):1458-65
pubmed: 10535437
JAMA. 2001 Sep 12;286(10):1181-6
pubmed: 11559262
Int J Med Inform. 2007 Oct;76(10):760-8
pubmed: 16950650
J Antimicrob Chemother. 2010 May;65(5):1062-9
pubmed: 20215130
PLoS One. 2017 Aug 24;12(8):e0183062
pubmed: 28837665
Stud Health Technol Inform. 2017;235:529-533
pubmed: 28423849
J Am Med Inform Assoc. 2000 Nov-Dec;7(6):564-8
pubmed: 11062230
BMJ. 1999 Feb 20;318(7182):527-30
pubmed: 10024268
Clin Microbiol Infect. 2008 Apr;14 Suppl 3:15-21
pubmed: 18318875
AMIA Annu Symp Proc. 2014 Nov 14;2014:1115-24
pubmed: 25954422
AMIA Annu Symp Proc. 2009 Nov 14;2009:60-4
pubmed: 20351823
Patient Educ Couns. 2003 Sep;51(1):29-37
pubmed: 12915277
J Biomed Inform. 2006 Dec;39(6):648-55
pubmed: 16442853
J Biomed Inform. 2018 Feb;78:134-143
pubmed: 29246790
J Am Med Inform Assoc. 2010 Jan-Feb;17(1):25-33
pubmed: 20064798
Int J Med Inform. 2012 Aug;81(8):521-6
pubmed: 22483528
Proc AMIA Symp. 2000;:394-8
pubmed: 11079912
J Am Med Inform Assoc. 2015 Jan;22(1):236-42
pubmed: 25125688
Stud Health Technol Inform. 2014;205:13-7
pubmed: 25160136
J Am Med Inform Assoc. 2013 Mar-Apr;20(2):317-24
pubmed: 22759620
Pharm World Sci. 2007 Aug;29(4):342-9
pubmed: 17458707
Br J Gen Pract. 2007 Dec;57(545):971-8
pubmed: 18252073
J Am Med Inform Assoc. 2012 May-Jun;19(3):413-22
pubmed: 21828224
Artif Intell Med. 2018 Jul;89:24-33
pubmed: 29776758
Int J Qual Health Care. 2006 Jun;18(3):224-31
pubmed: 16415039
Clin Microbiol Infect. 2011 Jan;17(1):80-7
pubmed: 20132254
Clin Microbiol Infect. 2011 Nov;17 Suppl 6:E1-59
pubmed: 21951385
Clin Infect Dis. 2016 May 15;62(10):e51-77
pubmed: 27080992
Med J Aust. 2002 Nov 4;177(9):502-6
pubmed: 12405894
J Am Med Inform Assoc. 1998 May-Jun;5(3):227-36
pubmed: 9609492
Int J Med Inform. 2015 Aug;84(8):548-60
pubmed: 25920928
Ann Intern Med. 2003 Apr 1;138(7):525-33
pubmed: 12667022
BMC Med Inform Decis Mak. 2004 Jul 20;4:10
pubmed: 15265240
P T. 2015 Apr;40(4):277-83
pubmed: 25859123
J Am Med Inform Assoc. 2014 Feb;21(e1):e107-16
pubmed: 24008427