Glutaric Acid Affects Pericyte Contractility and Migration: Possible Implications for GA-I Pathogenesis.
Amino Acid Metabolism, Inborn Errors
/ pathology
Animals
Astrocytes
/ drug effects
Brain Diseases, Metabolic
/ pathology
Capillaries
/ drug effects
Cell Movement
/ drug effects
Cells, Cultured
Cerebral Cortex
/ pathology
Culture Media, Conditioned
/ pharmacology
Cytokines
/ metabolism
Glutarates
/ pharmacology
Glutaryl-CoA Dehydrogenase
/ deficiency
Pericytes
/ drug effects
Rats, Sprague-Dawley
Vasoconstriction
/ drug effects
Astrocyte-conditioned media
Astrocytes
Capillary contractility
Cell migration
Glutaric acid
Glutaric acidemia type 1
Pericyte
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
Nov 2019
Nov 2019
Historique:
received:
18
02
2019
accepted:
23
04
2019
pubmed:
20
5
2019
medline:
13
3
2020
entrez:
20
5
2019
Statut:
ppublish
Résumé
Glutaric acidemia I (GA-I) is an inherited neurometabolic childhood disease characterized by bilateral striatal neurodegeneration upon brain accumulation of millimolar concentrations of glutaric acid (GA) and related metabolites. Vascular dysfunction, including abnormal cerebral blood flow and blood-brain barrier damage, is an early pathological feature in GA-I, although the affected cellular targets and underlying mechanisms remain unknown. In the present study, we have assessed the effects of GA on capillary pericyte contractility in cerebral cortical slices and pericyte cultures, as well as on the survival, proliferation, and migration of cultured pericytes. GA induced a significant reduction in capillary diameter at distances up to ~ 10 μm from the center of pericyte somata. However, GA did not affect the contractility of cultured pericytes, suggesting that the response elicited in slices may involve GA evoking pericyte contraction by acting on other cellular components of the neurovascular unit. Moreover, GA indirectly inhibited migration of cultured pericytes, an effect that was dependent on soluble glial factors since it was observed upon application of conditioned media from GA-treated astrocytes (CM-GA), but not upon direct GA addition to the medium. Remarkably, CM-GA showed increased expression of cytokines and growth factors that might mediate the effects of increased GA levels not only on pericyte migration but also on vascular permeability and angiogenesis. These data suggest that some effects elicited by GA might be produced by altering astrocyte-pericyte communication, rather than directly acting on pericytes. Importantly, GA-evoked alteration of capillary pericyte contractility may account for the reduced cerebral blood flow observed in GA-I patients.
Identifiants
pubmed: 31104295
doi: 10.1007/s12035-019-1620-4
pii: 10.1007/s12035-019-1620-4
doi:
Substances chimiques
Culture Media, Conditioned
0
Cytokines
0
Glutarates
0
Glutaryl-CoA Dehydrogenase
EC 1.3.8.6
glutaric acid
H849F7N00B
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7694-7707Subventions
Organisme : Agencia Nacional de Investigación e Innovación
ID : PhD studentship
Organisme : Biotechnology and Biological Sciences Research Council (UK)
ID : LIDo PhD studentship
Références
Brain. 2006 Apr;129(Pt 4):899-910
pubmed: 16446282
Adv Exp Med Biol. 2016;949:227-243
pubmed: 27714692
J Cell Biol. 2003 Jun 23;161(6):1163-77
pubmed: 12810700
Neurology. 2005 Jun 28;64(12):2142-4
pubmed: 15985591
Exp Eye Res. 1988 Mar;46(3):349-62
pubmed: 3258246
Fluids Barriers CNS. 2014 Jul 24;11:15
pubmed: 25077029
Biochem Med. 1975 Jan;12(1):12-21
pubmed: 1137568
J Inherit Metab Dis. 2017 Jan;40(1):75-101
pubmed: 27853989
Curr Opin Hematol. 2008 May;15(3):197-203
pubmed: 18391785
J Neurosci Res. 2002 Jan 1;67(1):21-9
pubmed: 11754077
Cell Mol Life Sci. 2014 Jan;71(2):299-309
pubmed: 23912898
Methods Mol Biol. 2016;1395:87-103
pubmed: 26910071
Pediatr Emerg Care. 2002 Feb;18(1):44-7
pubmed: 11862140
Brain. 2009 Jul;132(Pt 7):1764-82
pubmed: 19433437
Nature. 2006 Oct 12;443(7112):700-4
pubmed: 17036005
Mol Genet Metab. 2011 Sep-Oct;104(1-2):93-106
pubmed: 21820344
Methods Mol Biol. 2012;814:283-303
pubmed: 22144314
J Cereb Blood Flow Metab. 2017 Jan;37(1):52-68
pubmed: 27780904
J Clin Invest. 2012 Jul;122(7):2454-68
pubmed: 22653056
Am J Med Genet C Semin Med Genet. 2003 Aug 15;121C(1):53-70
pubmed: 12888986
Nature. 2014 Apr 3;508(7494):55-60
pubmed: 24670647
Hum Mol Genet. 2015 Aug 15;24(16):4504-15
pubmed: 25968119
J Physiol. 2003 Sep 15;551(Pt 3):787-99
pubmed: 12876212
Science. 1997 Jul 11;277(5323):242-5
pubmed: 9211853
Dev Cell. 2011 Aug 16;21(2):193-215
pubmed: 21839917
Brain. 2015 Jun;138(Pt 6):1548-67
pubmed: 25805644
J Cereb Blood Flow Metab. 2016 Feb;36(2):451-5
pubmed: 26661200
J Inherit Metab Dis. 2004;27(6):829-34
pubmed: 15505389
Brain. 2005 Apr;128(Pt 4):711-22
pubmed: 15689364
PLoS One. 2011;6(6):e20831
pubmed: 21698251
Cell Mol Life Sci. 2016 Jan;73(1):57-77
pubmed: 26403789
Front Neuroenergetics. 2010 May 21;2:null
pubmed: 20725515
Circ Res. 2005 Sep 16;97(6):512-23
pubmed: 16166562
Microvasc Res. 2012 Jul;84(1):74-80
pubmed: 22484453
Brain. 2010 Jan;133(Pt 1):76-92
pubmed: 20032085
Nat Protoc. 2014 Feb;9(2):323-36
pubmed: 24434801
Neurobiol Dis. 2008 Dec;32(3):528-34
pubmed: 18930146
Neuropediatrics. 1996 Jun;27(3):115-23
pubmed: 8837070
Methods Mol Biol. 2011;769:25-30
pubmed: 21748666
Pediatr Res. 2006 Feb;59(2):196-202
pubmed: 16439578
Nat Neurosci. 2016 Dec;19(12):1619-1627
pubmed: 27775719
Brain. 2007 Jul;130(Pt 7):1905-20
pubmed: 17478444
Rev Neurol. 2004 Nov 16-30;39(10):939-42
pubmed: 15573311