Dorsolateral striatal miR-134 modulates excessive methamphetamine intake in self-administering rats.
Dorsolateral striatum
Excessive drug intake
Methamphetamine addiction
Stimulus-response habit learning
miR-134
Journal
Metabolic brain disease
ISSN: 1573-7365
Titre abrégé: Metab Brain Dis
Pays: United States
ID NLM: 8610370
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
02
03
2019
accepted:
10
05
2019
pubmed:
4
6
2019
medline:
1
5
2020
entrez:
2
6
2019
Statut:
ppublish
Résumé
Increasing evidence indicates that excessive drug consumption is sufficient for the transition from recreational and controlled drug use to uncontrolled use and addiction. However, the underlying mechanisms are debated. Some neurobehavioral and neuroimaging evidence indicates that dorsolateral striatum (dlStr)-dependent habit learning plays a key role in excessive drug intake and the transition to addiction, but little is known about the molecular events. The present study investigated whether dlStr miR-134, an important regulator of synaptic transmission and plasticity, is involved in excessive methamphetamine intake. We established excessive and uncontrolled methamphetamine self-administration model in rats by permitting animals extended access to drug (6 h/session/d, LgA group), whereas animals that were limited to access to drug (2 h/session/d, ShA group) exhibited low and controlled self-administration. miR-134 expression in dlStr was significantly increased and its target LIMK1 expression was decreased in the LgA group, but not in the ShA group, compared with the saline control group. However, passive methamphetamine exposure did not alter miR-134 and LIMK1 levels in dlStr. We also found that down-regulation of miR-134 in dlStr through local microinjection of a lentivirus carrying miR-134 sponge (LV-miR-134-Sil) significantly reduced methamphetamine infusions and excessive consumption in LgA group, rather than ShA group. These results indicated that dlStr miR-134, perhaps via its target LIMK1, contributed to excessive and uncontrolled methamphetamine intake, supporting the hypothesis that stimulus-response habit formation is an important mechanism underlying the transition from controlled drug use to uncontrolled drug use and addiction.
Identifiants
pubmed: 31152340
doi: 10.1007/s11011-019-00430-3
pii: 10.1007/s11011-019-00430-3
doi:
Substances chimiques
Central Nervous System Stimulants
0
MIRN134 microRNA, rat
0
MicroRNAs
0
Methamphetamine
44RAL3456C
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1029-1041Références
J Neurosci. 2004 Apr 7;24(14):3554-62
pubmed: 15071103
Brain Res. 2010 Jun 18;1338:3-13
pubmed: 20380818
Behav Pharmacol. 2013 Sep;24(5-6):356-62
pubmed: 23839030
Curr Top Behav Neurosci. 2016;27:473-506
pubmed: 26475159
Neuropsychopharmacology. 2011 Nov;36(12):2431-40
pubmed: 21775976
Nature. 2006 Jan 19;439(7074):283-9
pubmed: 16421561
Psychopharmacology (Berl). 2016 Oct;233(19-20):3587-602
pubmed: 27481050
Psychopharmacology (Berl). 2008 Sep;199(4):615-24
pubmed: 18493748
Neuron. 1998 Sep;21(3):467-76
pubmed: 9768834
Neurosci Lett. 2016 Jan 12;611:21-7
pubmed: 26592480
Cell. 2004 Jan 23;116(2):281-97
pubmed: 14744438
Nature. 2010 Jul 8;466(7303):197-202
pubmed: 20613834
Genes Brain Behav. 2018 Mar;17(3):e12424
pubmed: 28873276
Psychopharmacology (Berl). 2009 Dec;207(3):391-400
pubmed: 19784636
Psychopharmacology (Berl). 2016 Aug;233(15-16):3017-29
pubmed: 27329413
Acta Pharmacol Sin. 2011 Feb;32(2):175-81
pubmed: 21293469
Front Genet. 2013 May 10;4:43
pubmed: 23717324
J Neurosci. 2005 Sep 21;25(38):8665-70
pubmed: 16177034
Mol Neurobiol. 2017 Apr;54(3):2241-2254
pubmed: 26944283
Psychopharmacology (Berl). 2006 May;186(1):48-53
pubmed: 16552556
Neuropsychopharmacology. 2009 Feb;34(3):796-804
pubmed: 18971927
Ther Drug Monit. 2010 Aug;32(4):504-7
pubmed: 20592647
Science. 1998 Oct 9;282(5387):298-300
pubmed: 9765157
Physiol Behav. 2016 Oct 1;164(Pt A):330-5
pubmed: 27321756
Trends Neurosci. 2012 May;35(5):325-34
pubmed: 22436491
Neuropsychopharmacology. 2017 Nov;42(12):2314-2324
pubmed: 28462940
Neuropharmacology. 2018 Mar 15;131:364-376
pubmed: 29329879
Neuron. 2002 Jul 3;35(1):121-33
pubmed: 12123613
Exp Clin Psychopharmacol. 2010 Jun;18(3):257-66
pubmed: 20545390
Neuropsychopharmacology. 2010 Jan;35(1):48-69
pubmed: 19776734
Nat Neurosci. 2015 May;18(5):666-73
pubmed: 25867122
Neurosci Biobehav Rev. 2013 Nov;37(9 Pt A):1946-54
pubmed: 23438892
Prog Neuropsychopharmacol Biol Psychiatry. 2018 Dec 20;87(Pt A):11-21
pubmed: 28887182
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20703-8
pubmed: 23184975
Psychopharmacology (Berl). 2005 Jul;180(3):473-90
pubmed: 15731896
Pharmacol Biochem Behav. 2004 Dec;79(4):751-60
pubmed: 15582684
Neuropsychopharmacology. 2012 Jun;37(7):1612-9
pubmed: 22334124
Curr Opin Pharmacol. 2005 Feb;5(1):20-5
pubmed: 15661621
Neuroscience. 2017 Jul 25;356:242-254
pubmed: 28576726
J Neurosci. 2012 Mar 28;32(13):4645-50
pubmed: 22457510
Neuropsychopharmacology. 2000 Apr;22(4):413-21
pubmed: 10700660
Psychopharmacology (Berl). 2007 Apr;191(3):391-431
pubmed: 17072591
Psychopharmacology (Berl). 2005 Jul;180(3):414-26
pubmed: 15739077
Psicothema. 2016 Nov;28(4):421-427
pubmed: 27776611
Nat Neurosci. 2005 Nov;8(11):1481-9
pubmed: 16251991
Neuron. 2011 Feb 24;69(4):650-63
pubmed: 21338877
J Neurosci. 2002 Jul 15;22(14):6247-53
pubmed: 12122083
J Neurosci. 2006 Jun 14;26(24):6583-8
pubmed: 16775146
Biol Psychiatry. 2012 Sep 1;72(5):389-95
pubmed: 22440617
Eur J Neurosci. 2007 Feb;25(3):847-53
pubmed: 17328779