Dissecting the genetic basis of fiber quality and yield traits in interspecific backcross populations of Gossypium hirsutum × Gossypium barbadense.
Fiber quality
Interspecific backcross populations
QTL cluster
Quantitative trait locus (QTL)
Yield
Journal
Molecular genetics and genomics : MGG
ISSN: 1617-4623
Titre abrégé: Mol Genet Genomics
Pays: Germany
ID NLM: 101093320
Informations de publication
Date de publication:
Dec 2019
Dec 2019
Historique:
received:
18
11
2018
accepted:
29
05
2019
pubmed:
16
6
2019
medline:
12
11
2019
entrez:
16
6
2019
Statut:
ppublish
Résumé
Fiber quality and yield are important traits of cotton. Quantitative trait locus (QTL) mapping is a prerequisite for marker-assisted selection (MAS) in cotton breeding. To identify QTLs for fiber quality and yield traits, 4 backcross-generation populations (BC
Identifiants
pubmed: 31201519
doi: 10.1007/s00438-019-01582-8
pii: 10.1007/s00438-019-01582-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1385-1402Subventions
Organisme : Guangdong Province Introduction of Innovative R&D Team (CN)
ID : 2016YFD0100203
Références
BMC Plant Biol. 2010 Jun 28;10:132
pubmed: 20584292
BMC Genomics. 2013 Nov 11;14:776
pubmed: 24215677
Plant Physiol. 2007 Dec;145(4):1303-10
pubmed: 18056866
Genetics. 2007 Aug;176(4):2577-88
pubmed: 17565937
Mol Genet Genomics. 2015 Aug;290(4):1615-25
pubmed: 25758743
Plant J. 2018 Jul;95(1):5-16
pubmed: 29668111
Nat Genet. 2014 Jun;46(6):567-72
pubmed: 24836287
Theor Appl Genet. 2012 May;124(8):1415-28
pubmed: 22297564
PLoS One. 2016 Sep 07;11(9):e0159101
pubmed: 27603312
Front Plant Sci. 2017 Dec 22;8:2168
pubmed: 29312408
PLoS One. 2017 Sep 20;12(9):e0184882
pubmed: 28931074
G3 (Bethesda). 2017 Oct 5;7(10):3469-3479
pubmed: 28874383
Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4419-24
pubmed: 9539752
PLoS One. 2015 Aug 11;10(8):e0135430
pubmed: 26262992
PLoS One. 2017 Aug 15;12(8):e0182918
pubmed: 28809947
Front Plant Sci. 2016 Sep 08;7:1356
pubmed: 27660632
Mol Genet Genomics. 2015 Jun;290(3):1003-25
pubmed: 25501533
Nat Biotechnol. 2015 May;33(5):524-30
pubmed: 25893780
Sci Rep. 2016 Aug 23;6:31954
pubmed: 27549323
Theor Appl Genet. 2016 Jun;129(6):1071-86
pubmed: 26883043
Genet Mol Res. 2011 Dec 08;10(4):3620-31
pubmed: 22183945
Mol Genet Genomics. 2014 Dec;289(6):1347-67
pubmed: 25314923
Int J Mol Sci. 2018 Feb 01;19(2):null
pubmed: 29389902
BMC Genomics. 2017 Sep 8;18(1):705
pubmed: 28886694
Theor Appl Genet. 2017 Jun;130(6):1297-1308
pubmed: 28349176
Nat Genet. 2018 Jun;50(6):803-813
pubmed: 29736016
G3 (Bethesda). 2016 Sep 08;6(9):2717-24
pubmed: 27342735
Sci Rep. 2018 Mar 13;8(1):4443
pubmed: 29535386
PLoS One. 2013;8(2):e57220
pubmed: 23468939
Theor Appl Genet. 2003 Feb;106(3):384-96
pubmed: 12589538
Genetics. 1994 Nov;138(3):829-47
pubmed: 7851778
BMC Genomics. 2014 May 24;15:397
pubmed: 24886099
BMC Plant Biol. 2016 Apr 11;16:79
pubmed: 27067834
Plant Biotechnol J. 2017 Aug;15(8):982-996
pubmed: 28064470
BMC Genomics. 2016 Mar 08;17:197
pubmed: 26951621
Int J Mol Sci. 2018 Jan 14;19(1):null
pubmed: 29342893
Front Plant Sci. 2017 Oct 25;8:1848
pubmed: 29118778
Nat Biotechnol. 2015 May;33(5):531-7
pubmed: 25893781
PLoS One. 2016 Jun 27;11(6):e0157978
pubmed: 27348815
Genetics. 1994 Apr;136(4):1457-68
pubmed: 8013918
Nat Genet. 2012 Oct;44(10):1098-103
pubmed: 22922876
J Integr Plant Biol. 2015 May;57(5):450-67
pubmed: 25263268
BMC Genomics. 2016 Nov 5;17(1):877
pubmed: 27814678
Mol Genet Genomics. 2017 Dec;292(6):1281-1306
pubmed: 28733817
PLoS One. 2015 Jun 25;10(6):e0130742
pubmed: 26110526
Front Plant Sci. 2018 Jul 18;9:1023
pubmed: 30073008