Frontal pathways in cognitive control: direct evidence from intraoperative stimulation and diffusion tractography.
Adolescent
Adult
Aged
Brain Mapping
/ methods
Brain Neoplasms
/ surgery
Cognition
/ physiology
Diffusion Tensor Imaging
Executive Function
/ physiology
Female
Frontal Lobe
/ physiology
Glioma
/ surgery
Humans
Intraoperative Neurophysiological Monitoring
/ methods
Male
Middle Aged
Neural Pathways
/ physiology
Stroop Test
Young Adult
awake neurosurgery
direct electrical stimulation
executive function
fronto-striatal
tractography
Journal
Brain : a journal of neurology
ISSN: 1460-2156
Titre abrégé: Brain
Pays: England
ID NLM: 0372537
Informations de publication
Date de publication:
01 08 2019
01 08 2019
Historique:
received:
14
11
2018
revised:
18
04
2019
accepted:
28
04
2019
entrez:
27
7
2019
pubmed:
28
7
2019
medline:
27
5
2020
Statut:
ppublish
Résumé
A key aspect of cognitive control is the management of conflicting incoming information to achieve a goal, termed 'interference control'. Although the role of the right frontal lobe in interference control is evident, the white matter tracts subserving this cognitive process remain unclear. To investigate this, we studied the effect of transient network disruption (by means of direct electrical stimulation) and permanent disconnection (resulting from neurosurgical resection) on interference control processes, using the Stroop test in the intraoperative and extraoperative neurosurgical setting. We evaluated the sites at which errors could be produced by direct electrical stimulation during an intraoperative Stroop test in 34 patients with frontal right hemisphere glioma. Lesion-symptom mapping was used to evaluate the relationship between the resection cavities and postoperative performance on the Stroop test of this group compared with an additional 29 control patients who did not perform the intraoperative test (63 patients in total aged 17-77 years; 28 female). We then examined tract disruption and disconnection in a subset of eight patients who underwent both the intraoperative Stroop test and high angular resolution diffusion imaging (HARDI) tractography. The results showed that, intraoperatively, the majority of sites associated with errors during Stroop test performance and concurrent subcortical stimulation clustered in a region of white matter medial to the right inferior frontal gyrus, lateral and superior to the striatum. Patients who underwent the intraoperative test maintained cognitive control ability at the 1-month follow-up (P = 0.003). Lesion-symptom analysis showed resection of the right inferior frontal gyrus was associated with slower postoperative Stroop test ability (corrected for multiple comparisons, 5000 permutations). The stimulation sites associated with intraoperative errors most commonly corresponded with the inferior fronto-striatal tracts and anterior thalamic radiation (over 75% of patients), although the latter was commonly resected without postoperative deficits on the Stroop test (in 60% of patients). Our results show converging evidence to support a critical role for the inferior frontal gyrus in interference control processes. The intraoperative data combined with tractography suggests that cortico-subcortical tracts, over cortico-cortical connections, may be vital in maintaining efficiency of cognitive control processes. This suggests the importance of their preservation during resection of right frontal tumours.
Identifiants
pubmed: 31347684
pii: 5538589
doi: 10.1093/brain/awz178
pmc: PMC6658848
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2451-2465Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Commentaires et corrections
Type : CommentIn
Informations de copyright
© The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain.
Références
Neuropsychologia. 1999 Aug;37(9):1005-27
pubmed: 10468365
Science. 2000 Jun 9;288(5472):1835-8
pubmed: 10846167
J Cogn Neurosci. 2000 Nov;12(6):988-1000
pubmed: 11177419
Neuropsychologia. 2001;39(8):771-86
pubmed: 11369401
Neuroimage. 2001 Aug;14(2):486-500
pubmed: 11467921
Neuroimage. 2002 Jan;15(1):273-89
pubmed: 11771995
Neuroimage. 2002 Jun;16(2):349-60
pubmed: 12030821
Neurosci Res. 2002 Jun;43(2):111-7
pubmed: 12067746
Science. 2003 Nov 14;302(5648):1181-5
pubmed: 14615530
Science. 2004 Feb 13;303(5660):1023-6
pubmed: 14963333
Neuroimage. 2004 Jul;22(3):1097-106
pubmed: 15219581
Nat Rev Neurosci. 2004 Oct;5(10):813-9
pubmed: 15378041
Neuroimage. 2004 Oct;23(2):604-12
pubmed: 15488410
Brain. 2005 Apr;128(Pt 4):788-96
pubmed: 15705613
J Clin Exp Neuropsychol. 2005 May;27(4):485-503
pubmed: 15962693
Cereb Cortex. 2006 Apr;16(4):553-60
pubmed: 16033925
Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2003 Jun;10(2):85-98
pubmed: 17203134
J Neurosci. 2007 Apr 4;27(14):3743-52
pubmed: 17409238
Arch Clin Neuropsychol. 2008 Mar;23(2):201-16
pubmed: 18096360
Trends Cogn Sci. 2008 May;12(5):193-200
pubmed: 18403252
Neurosci Biobehav Rev. 2009 May;33(5):631-46
pubmed: 18835296
Child Neuropsychol. 2009 Jul;15(4):321-42
pubmed: 18850349
Hum Brain Mapp. 2009 Sep;30(9):3043-56
pubmed: 19180558
Neuroimage. 2010 Jan 15;49(2):1446-58
pubmed: 19781650
Psychol Bull. 1991 Mar;109(2):163-203
pubmed: 2034749
Neuron. 2011 Feb 24;69(4):680-94
pubmed: 21338879
Nat Neurosci. 2011 Sep 18;14(10):1245-6
pubmed: 21926985
Hum Brain Mapp. 2013 Oct;34(10):2464-83
pubmed: 22488973
Cortex. 2012 Nov-Dec;48(10):1262-87
pubmed: 22995574
Annu Rev Psychol. 2013;64:135-68
pubmed: 23020641
Neuropsychologia. 2013 Mar;51(4):713-24
pubmed: 23266766
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1518-23
pubmed: 23300283
Neuroscience. 2014 Sep 12;276:14-28
pubmed: 24051366
Trends Cogn Sci. 2014 Apr;18(4):177-85
pubmed: 24440116
Neuro Oncol. 2014 Aug;16(8):1110-28
pubmed: 24500420
Front Hum Neurosci. 2014 Jun 11;8:419
pubmed: 24966828
Brain Struct Funct. 2016 Apr;221(3):1751-66
pubmed: 25682261
J Neurosci. 2015 Apr 8;35(14):5480-8
pubmed: 25855166
Cereb Cortex. 2016 May;26(5):2225-2241
pubmed: 25899707
Nature. 2015 Oct 29;526(7575):705-9
pubmed: 26503050
Cereb Cortex. 2017 Feb 1;27(2):1532-1544
pubmed: 26759477
Cortex. 2016 Jun;79:42-56
pubmed: 27085894
Cereb Cortex. 2017 Aug 1;27(8):4033-4047
pubmed: 27461122
J Neurosci. 2016 Nov 9;36(45):11489-11495
pubmed: 27911752
J Neuropsychol. 2018 Sep;12(3):484-510
pubmed: 28485076
Science. 2017 Oct 27;358(6362):478-482
pubmed: 29074767
Hum Brain Mapp. 2018 Feb;39(2):772-782
pubmed: 29139174
Gigascience. 2018 Mar 1;7(3):1-17
pubmed: 29432527
J Neurosurg. 2018 Feb 23;130(1):17-27
pubmed: 29473778
Front Psychol. 2018 Feb 09;9:118
pubmed: 29479331
Neuropsychologia. 2018 Jul 1;115:88-100
pubmed: 29605593
Cereb Cortex. 2018 Jul 1;28(7):2482-2494
pubmed: 29688293
Cereb Cortex. 2019 Apr 1;29(4):1532-1546
pubmed: 29912435
Hum Brain Mapp. 2018 Oct;39(10):4065-4082
pubmed: 29923271
NMR Biomed. 2019 Apr;32(4):e3945
pubmed: 30113753
J Neurosurg. 2018 Sep 28;:1-7
pubmed: 30265193
Curr Biol. 2018 Oct 22;28(20):3303-3309.e3
pubmed: 30318348
Cortex. 2019 Feb;111:148-163
pubmed: 30481666
J Exp Psychol Learn Mem Cogn. 1994 Mar;20(2):470-84
pubmed: 8151280
J Neurosurg. 1993 May;78(5):785-93
pubmed: 8468609
Pharmacol Biochem Behav. 1996 Jun;54(2):309-15
pubmed: 8743589