New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders.
Adult
Aged
Alcohol Drinking
/ genetics
Alcoholism
/ genetics
Brain
/ physiopathology
Female
Genes
/ genetics
Genetic Predisposition to Disease
/ genetics
Genome-Wide Association Study
Humans
Magnetic Resonance Imaging
Male
Mental Disorders
/ genetics
Middle Aged
Neuroimaging
Polymorphism, Single Nucleotide
/ genetics
Quantitative Trait Loci
/ genetics
Schizophrenia
/ genetics
White People
/ genetics
Journal
Nature human behaviour
ISSN: 2397-3374
Titre abrégé: Nat Hum Behav
Pays: England
ID NLM: 101697750
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
01
11
2018
accepted:
11
06
2019
pubmed:
31
7
2019
medline:
20
2
2020
entrez:
31
7
2019
Statut:
ppublish
Résumé
Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d
Identifiants
pubmed: 31358974
doi: 10.1038/s41562-019-0653-z
pii: 10.1038/s41562-019-0653-z
pmc: PMC7711277
mid: NIHMS1649425
doi:
Types de publication
Journal Article
Meta-Analysis
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
950-961Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK093757
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0700704
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/R023484/1
Pays : United Kingdom
Organisme : NIBIB NIH HHS
ID : U54 EB020403
Pays : United States
Organisme : NIDA NIH HHS
ID : R21 DA040439
Pays : United States
Organisme : NIAAA NIH HHS
ID : R01 AA026818
Pays : United States
Organisme : Medical Research Council
ID : MR/R026505/1
Pays : United Kingdom
Organisme : NIAAA NIH HHS
ID : R01 AA019526
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL120393
Pays : United States
Organisme : MRF
ID : MRF_MRF-058-0004-RG-DESRI
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : U01 HL130114
Pays : United States
Organisme : NHLBI NIH HHS
ID : U01 HL120393
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK072193
Pays : United States
Organisme : Medical Research Council
ID : MR/R00465X/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/L01341X/1
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH085772
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK062370
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_00007/10
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : U01 DK062370
Pays : United States
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K026992/1
Pays : United Kingdom
Références
GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 392, 1015–1035 (2018).
Poznyak, V. & Rekve, D. (eds) Global Status Report on Alcohol and Health 2018. https://www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2018/en/ (WHO, 2018).
Wood, A. M. et al. Risk thresholds for alcohol consumption: combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 391, 1513–1523 (2018).
pubmed: 29676281
pmcid: 5899998
doi: 10.1016/S0140-6736(18)30134-X
Verhulst, B., Neale, M. C. & Kendler, K. S. The heritability of alcohol use disorders: a meta-analysis of twin and adoption studies. Psychol. Med. 45, 1061–1072 (2015).
pubmed: 25171596
doi: 10.1017/S0033291714002165
Schumann, G. et al. KLB is associated with alcohol drinking, and its gene product β-klotho is necessary for FGF21 regulation of alcohol preference. Proc. Natl Acad. Sci. USA 113, 14372–14377 (2016).
pubmed: 27911795
doi: 10.1073/pnas.1611243113
pmcid: 5167198
Clarke, T. K. et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol. Psychiatr. 22, 1376–1384 (2017).
doi: 10.1038/mp.2017.153
Jorgenson, E. et al. Genetic contributors to variation in alcohol consumption vary by race/ethnicity in a large multi-ethnic genome-wide association study. Mol. Psychiatr. 22, 1359–1367 (2017).
doi: 10.1038/mp.2017.101
Baik, I., Cho, N. H., Kim, S. H., Han, B. G. & Shin, C. Genome-wide association studies identify genetic loci related to alcohol consumption in Korean men. Am. J. Clin. Nutr. 93, 809–816 (2011).
pubmed: 21270382
doi: 10.3945/ajcn.110.001776
Jackson, B. et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genomics 5, 283–303 (2011).
pubmed: 21712190
pmcid: 3392178
doi: 10.1186/1479-7364-5-4-283
Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
McCarthy, S. et al. Haplotype Reference Consortium. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
pubmed: 27548312
pmcid: 5388176
doi: 10.1038/ng.3643
Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
pubmed: 25642630
pmcid: 4495769
doi: 10.1038/ng.3211
Evangelou, E. & Ioannidis, J. P. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).
pubmed: 23657481
doi: 10.1038/nrg3472
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
pubmed: 30224653
pmcid: 6284793
doi: 10.1038/s41588-018-0205-x
Desikan, R. S. et al. Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus. Mol. Psychiatr. 20, 1588–1595 (2015).
doi: 10.1038/mp.2015.6
Do, C. B. et al. Web-based genome-wide association study identifies two novel loci and a substantial genetic component for Parkinson’s disease. PLoS Genet. 7, e1002141 (2011).
pubmed: 21738487
pmcid: 3121750
doi: 10.1371/journal.pgen.1002141
Pankratz, N. et al. Meta-analysis of Parkinson’s disease: identification of a novel locus, RIT2. Ann. Neurol. 71, 370–384 (2012).
pubmed: 22451204
pmcid: 3354734
doi: 10.1002/ana.22687
Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).
pubmed: 27089181
pmcid: 4884152
doi: 10.1038/ng.3552
Couch, F. J. et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet. 9, e1003212 (2013).
pubmed: 23544013
pmcid: 3609646
doi: 10.1371/journal.pgen.1003212
Ikram, M. A. et al. Common variants at 6q22 and 17q21 are associated with intracranial volume. Nat. Genet. 44, 539–544 (2012).
pubmed: 22504418
pmcid: 3618290
doi: 10.1038/ng0612-732c
van der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012).
pubmed: 23222517
pmcid: 3623669
doi: 10.1038/nature11677
Samuel, A. et al. Six3 regulates optic nerve development via multiple mechanisms. Sci. Rep. 6, 20267 (2016).
pubmed: 26822689
pmcid: 4731751
doi: 10.1038/srep20267
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).
pubmed: 26192919
pmcid: 4881818
doi: 10.1038/ng.3359
International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).
Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).
pubmed: 20935630
pmcid: 3014648
doi: 10.1038/ng.686
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
pubmed: 20686565
pmcid: 3039276
doi: 10.1038/nature09270
Lim, C. S. & Alkon, D. L. Protein kinase C stimulates HuD-mediated mRNA stability and protein expression of neurotrophic factors and enhances dendritic maturation of hippocampal neurons in culture. Hippocampus 22, 2303–2319 (2012).
pubmed: 22736542
doi: 10.1002/hipo.22048
Barker, J. M., Taylor, J. R., De Vries, T. J. & Peters, J. Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res. 1628, 68–81 (2015).
pubmed: 25451116
doi: 10.1016/j.brainres.2014.10.058
Tanaka, T. et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am. J. Clin. Nutr. 97, 1395–1402 (2013).
pubmed: 23636237
pmcid: 3652928
doi: 10.3945/ajcn.112.052183
Talukdar, S. et al. FGF21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).
pubmed: 26724861
doi: 10.1016/j.cmet.2015.12.008
Grant, S. F. et al. Association analysis of the FTO gene with obesity in children of Caucasian and African ancestry reveals a common tagging SNP. PLoS One 3, e1746 (2008).
pubmed: 18335027
pmcid: 2262153
doi: 10.1371/journal.pone.0001746
Elliott, P. et al. The airwave health monitoring study of police officers and staff in Great Britain: rationale, design and methods. Environ. Res. 134, 280–285 (2014).
pubmed: 25194498
doi: 10.1016/j.envres.2014.07.025
Elliott, L. T. et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
pubmed: 30305740
doi: 10.1038/s41586-018-0571-7
pmcid: 6786974
Stipanovich, A. et al. A phosphatase cascade by which rewarding stimuli control nucleosomal response. Nature 453, 879–884 (2008).
pubmed: 18496528
pmcid: 2796210
doi: 10.1038/nature06994
Yang, B. Z. et al. Association of haplotypic variants in DRD2, ANKK1, TTC12 and NCAM1 to alcohol dependence in independent case control and family samples. Hum. Mol. Genet. 16, 2844–2853 (2007).
pubmed: 17761687
doi: 10.1093/hmg/ddm240
Gelernter, J. et al. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum. Mol. Genet. 15, 3498–3507 (2006).
pubmed: 17085484
doi: 10.1093/hmg/ddl426
Treutlein, J. et al. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol. Psychiatr. 11, 594–602 (2006).
doi: 10.1038/sj.mp.4001813
Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166 (1998).
pubmed: 9620773
doi: 10.1038/520
Ruggeri, B. et al. Association of protein phosphatase PPM1G with alcohol use disorder and brain activity during behavioral control in a genome-wide methylation analysis. Am. J. Psychiatr. 172, 543–552 (2015).
pubmed: 25982659
doi: 10.1176/appi.ajp.2014.14030382
Wang, J., Vasaikar, S., Shi, Z., Greer, M. & Zhang, B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 45, W130–W137 (2017).
pubmed: 28472511
pmcid: 5570149
doi: 10.1093/nar/gkx356
Gonzalez, D. A. et al. The Arf6 activator Efa6/PSD3 confers regional specificity and modulates ethanol consumption in Drosophila and humans. Mol. Psychiatr. 23, 621–628 (2018).
doi: 10.1038/mp.2017.112
Ojelade, S. A. et al. Rsu1 regulates ethanol consumption in Drosophila and humans. Proc. Natl Acad. Sci. USA 112, E4085–E4093 (2015).
pubmed: 26170296
doi: 10.1073/pnas.1417222112
pmcid: 4522778
Rademakers, R., Cruts, M. & van Broeckhoven, C. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum. Mutat. 24, 277–295 (2004).
pubmed: 15365985
doi: 10.1002/humu.20086
Higashi, Y. et al. Influence of extracellular zinc on M1 microglial activation. Sci. Rep. 7, 43778 (2017).
pubmed: 28240322
pmcid: 5327400
doi: 10.1038/srep43778
Chen, G. et al. Striatal involvement in human alcoholism and alcohol consumption, and withdrawal in animal models. Alcohol. Clin. Exp. Res. 35, 1739–1748 (2011).
pubmed: 21615425
pmcid: 3276303
doi: 10.1111/j.1530-0277.2011.01520.x
Okada, N. et al. Abnormal asymmetries in subcortical brain volume in schizophrenia. Mol. Psychiatr. 21, 1460–1466 (2016).
doi: 10.1038/mp.2015.209
van Erp, T. G. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatr. 21, 547–553 (2016).
doi: 10.1038/mp.2015.63
Meyers, J. L. et al. The association between DRD2/ANKK1 and genetically informed measures of alcohol use and problems. Addict. Biol. 18, 523–536 (2013).
pubmed: 22970887
doi: 10.1111/j.1369-1600.2012.00490.x
Logrip, M. L., Barak, S., Warnault, V. & Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 1628, 60–67 (2015).
pubmed: 25801118
pmcid: 4577309
doi: 10.1016/j.brainres.2015.03.025
Boschen, K. E., Criss, K. J., Palamarchouk, V., Roth, T. L. & Klintsova, A. Y. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats. Int. J. Dev. Neurosci. 43, 16–24 (2015).
pubmed: 25805052
pmcid: 4442714
doi: 10.1016/j.ijdevneu.2015.03.008
Monaco, A. et al. A complex network approach reveals a pivotal substructure of genes linked to schizophrenia. PLoS One 13, e0190110 (2018).
pubmed: 29304112
pmcid: 5755767
doi: 10.1371/journal.pone.0190110
Nielsen, S. M., Toftdahl, N. G., Nordentoft, M. & Hjorthoj, C. Association between alcohol, cannabis, and other illicit substance abuse and risk of developing schizophrenia: a nationwide population based register study. Psychol. Med. 47, 1668–1677 (2017).
pubmed: 28166863
doi: 10.1017/S0033291717000162
Nivard, M. G. et al. Connecting the dots, genome-wide association studies in substance use. Mol. Psychiatr. 21, 733–735 (2016).
doi: 10.1038/mp.2016.14
Gaziano, J. M. et al. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N. Engl. J. Med. 329, 1829–1834 (1993).
pubmed: 8247033
doi: 10.1056/NEJM199312163292501
Linn, S. et al. High-density lipoprotein cholesterol and alcohol consumption in US white and black adults: data from NHANES II. Am. J. Publ. Health 83, 811–816 (1993).
doi: 10.2105/AJPH.83.6.811
Vu, K. N. et al. Causal role of alcohol consumption in an improved lipid profile: the atherosclerosis risk in communities (ARIC) study. PLoS One 11, e0148765 (2016).
pubmed: 26849558
pmcid: 4744040
doi: 10.1371/journal.pone.0148765
Chaput, J. P., McNeil, J., Despres, J. P., Bouchard, C. & Tremblay, A. Short sleep duration is associated with greater alcohol consumption in adults. Appetite 59, 650–655 (2012).
pubmed: 22841812
doi: 10.1016/j.appet.2012.07.012
Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).
pubmed: 30482948
pmcid: 6430207
doi: 10.1038/s41593-018-0275-1
Bagnardi, V. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer 112, 580–593 (2015).
pubmed: 25422909
doi: 10.1038/bjc.2014.579
Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).
pubmed: 30305743
pmcid: 6786975
doi: 10.1038/s41586-018-0579-z
Boniface, S., Kneale, J. & Shelton, N. Drinking pattern is more strongly associated with under-reporting of alcohol consumption than socio-demographic factors: evidence from a mixed-methods study. BMC Publ. Health 14, 1297 (2014).
doi: 10.1186/1471-2458-14-1297
Greenfield, T. K. & Kerr, W. C. Alcohol measurement methodology in epidemiology: recent advances and opportunities. Addiction 103, 1082–1099 (2008).
pubmed: 18422826
pmcid: 2782942
doi: 10.1111/j.1360-0443.2008.02197.x
Grotz, A. K., Gloyn, A. L. & Thomsen, S. K. Prioritising causal genes at type 2 diabetes risk loci. Curr. Diab. Rep. 17, 76 (2017).
pubmed: 28758174
pmcid: 5534459
doi: 10.1007/s11892-017-0907-y
Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).
pubmed: 26287746
pmcid: 4959911
doi: 10.1056/NEJMoa1502214
Hambrecht, M. & Hafner, H. Substance abuse and the onset of schizophrenia. Biol. Psychiatr. 40, 1155–1163 (1996).
doi: 10.1016/S0006-3223(95)00609-5
Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
pubmed: 25642633
pmcid: 4342297
doi: 10.1038/ng.3190
Georgiopoulos, G. & Evangelou, E. Power considerations for λ inflation factor in meta-analyses of genome-wide association studies. Genet. Res. 98, e9 (2016).
doi: 10.1017/S0016672316000069
Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).
pubmed: 24762786
pmcid: 4083217
doi: 10.1038/nprot.2014.071
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
pubmed: 20616382
pmcid: 2922887
doi: 10.1093/bioinformatics/btq340
Stacey, D. et al. RASGRF2 regulates alcohol-induced reinforcement by influencing mesolimbic dopamine neuron activity and dopamine release. Proc. Natl Acad. Sci. USA 109, 21128–21133 (2012).
pubmed: 23223532
doi: 10.1073/pnas.1211844110
pmcid: 3529066
Bakshi, A. et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci. Rep. 6, 32894 (2016).
pubmed: 27604177
pmcid: 5015118
doi: 10.1038/srep32894
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci. 17, 1418–1428 (2014).
pubmed: 25174004
pmcid: 4208299
doi: 10.1038/nn.3801
Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).
pubmed: 26708335
doi: 10.1093/bioinformatics/btv722
Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).
pubmed: 12883005
doi: 10.1073/pnas.1530509100
pmcid: 170937
Shabalin, A. A. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28, 1353–1358 (2012).
pubmed: 22492648
pmcid: 3348564
doi: 10.1093/bioinformatics/bts163
Brown, C. A. et al. Development, validation and application of a new fornix template for studies of aging and preclinical Alzheimer’s disease. Neuroimage Clin. 13, 106–115 (2017).
pubmed: 27942453
doi: 10.1016/j.nicl.2016.11.024
Diedrichsen, J. et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 54, 1786–1794 (2011).
pubmed: 20965257
doi: 10.1016/j.neuroimage.2010.10.035
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).
pubmed: 11293691
doi: 10.1109/42.906424
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A. & Ochsner, K. N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).
pubmed: 18817740
pmcid: 2742320
doi: 10.1016/j.neuron.2008.09.006
Wager, T. D. et al. Brain mediators of cardiovascular responses to social threat: part I: reciprocal dorsal and ventral sub-regions of the medial prefrontal cortex and heart-rate reactivity. Neuroimage 47, 821–835 (2009).
pubmed: 19465137
doi: 10.1016/j.neuroimage.2009.05.043
Petersen, S. E. et al. UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18, 8 (2016).
pubmed: 26830817
pmcid: 4736703
doi: 10.1186/s12968-016-0227-4
Bai, W. et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson. 20, 65 (2018).
pubmed: 30217194
pmcid: 6138894
doi: 10.1186/s12968-018-0471-x
Linge, J. et al. Body composition profiling in the UK Biobank imaging study. Obesity (2018).
Peru y Colón de Portugal, R. L. et al. Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J. Neurosci. 32, 17706–17713 (2012).
pubmed: 23223291
pmcid: 3535434
doi: 10.1523/JNEUROSCI.1944-12.2012
Dimou, N. L. & Tsilidis, K. K. A primer in Mendelian randomization methodology with a focus on utilizing published summary association data. Methods Mol. Biol. 1793, 211–230 (2018).
pubmed: 29876899
doi: 10.1007/978-1-4939-7868-7_13