RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats.
Journal
Nature neuroscience
ISSN: 1546-1726
Titre abrégé: Nat Neurosci
Pays: United States
ID NLM: 9809671
Informations de publication
Date de publication:
09 2019
09 2019
Historique:
received:
10
09
2018
accepted:
20
06
2019
pubmed:
31
7
2019
medline:
7
11
2019
entrez:
31
7
2019
Statut:
ppublish
Résumé
Nucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia. Unconventional translation (RAN translation) of C9orf72 repeats generates dipeptide repeat proteins that can cause neurodegeneration. We performed a genetic screen for regulators of RAN translation and identified small ribosomal protein subunit 25 (RPS25), presenting a potential therapeutic target for C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia and other neurodegenerative diseases caused by nucleotide repeat expansions.
Identifiants
pubmed: 31358992
doi: 10.1038/s41593-019-0455-7
pii: 10.1038/s41593-019-0455-7
pmc: PMC6713615
mid: NIHMS1532495
doi:
Substances chimiques
C9orf72 Protein
0
C9orf72 protein, human
0
RPS25 protein, human
0
Ribosomal Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1383-1388Subventions
Organisme : NINDS NIH HHS
ID : R35 NS097273
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM113078
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI099506
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG000044
Pays : United States
Organisme : NIA NIH HHS
ID : RF1 AG064690
Pays : United States
Organisme : NINDS NIH HHS
ID : P01 NS099114
Pays : United States
Organisme : Motor Neurone Disease Association
ID : ISAACS/APR13/818-791
Pays : United Kingdom
Organisme : NICHD NIH HHS
ID : R01 HD086634
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS097850
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG064690
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS097263
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Renton, A. E. et al. Neuron 72, 257–268 (2011).
doi: 10.1016/j.neuron.2011.09.010
DeJesus-Hernandez, M. et al. Neuron 72, 245–256 (2011).
doi: 10.1016/j.neuron.2011.09.011
Mori, K. et al. Science 339, 1335–1338 (2013).
Ash, P. E. et al. Neuron 77, 639–646 (2013).
doi: 10.1016/j.neuron.2013.02.004
Zu, T. et al. Proc. Natl Acad. Sci. USA 110, E4968–E4977 (2013).
doi: 10.1073/pnas.1315438110
Gendron, T. F. et al. Acta Neuropathol. 126, 829–844 (2013).
doi: 10.1007/s00401-013-1192-8
Gao, F. B., Richter, J. D. & Cleveland, D. W. Cell 171, 994–1000 (2017).
doi: 10.1016/j.cell.2017.10.042
Cheng, W. et al. Nat. Commun. 9, 51 (2018).
doi: 10.1038/s41467-017-02495-z
Green, K. M. et al. Nat. Commun. 8, 2005 (2017).
doi: 10.1038/s41467-017-02200-0
Tabet, R. et al. Nat. Commun. 9, 152 (2018).
doi: 10.1038/s41467-017-02643-5
Landry, D. M., Hertz, M. I. & Thompson, S. R. Genes Dev. 23, 2753–2764 (2009).
doi: 10.1101/gad.1832209
Fuchs, G. et al. Proc. Natl Acad. Sci. USA 112, 319–325 (2015).
doi: 10.1073/pnas.1421328111
Hertz, M. I., Landry, D. M., Willis, A. E., Luo, G. & Thompson, S. R. Mol. Cell Biol. 33, 1016–1026 (2013).
doi: 10.1128/MCB.00879-12
Nishiyama, T., Yamamoto, H., Uchiumi, T. & Nakashima, N. Nucleic Acids Res. 35, 1514–1521 (2007).
doi: 10.1093/nar/gkl1121
Shi, Y. et al. Oncogene 35, 1015–1024 (2016).
doi: 10.1038/onc.2015.156
Thandapani, P., O’Connor, T. R., Bailey, T. L. & Richard, S. Mol. Cell 50, 613–623 (2013).
doi: 10.1016/j.molcel.2013.05.021
Mizielinska, S. et al. Science 345, 1192–1194 (2014).
doi: 10.1126/science.1256800
Shi, Y. et al. Nat. Med. 24, 313–325 (2018).
doi: 10.1038/nm.4490
Cleary, J. D. & Ranum, L. P. Curr. Opin. Genet. Dev. 44, 125–134 (2017).
doi: 10.1016/j.gde.2017.03.006
Green, K. M., Linsalata, A. E. & Todd, P. K. Brain Res. 1647, 30–42 (2016).
doi: 10.1016/j.brainres.2016.04.003
Kramer, N. J. et al. Science 353, 708–712 (2016).
doi: 10.1126/science.aaf7791
Alberti, S., Gitler, A. D. & Lindquist, S. Yeast 24, 913–919 (2007).
doi: 10.1002/yea.1502
Cooper, A. A. et al. Science 313, 324–328 (2006).
doi: 10.1126/science.1129462
Gietz, R. D. & Schiestl, R. H. Nat. Protoc. 2, 38–41 (2007).
doi: 10.1038/nprot.2007.15
Gendron, T. F. et al. Sci. Transl. Med. 9, eaai7866 (2017).
doi: 10.1126/scitranslmed.aai7866
Gendron, T. F. et al. Acta Neuropathol. 130, 559–573 (2015).
doi: 10.1007/s00401-015-1474-4
Kramer, N. J. et al. Nat. Genet. 50, 603–612 (2018).
doi: 10.1038/s41588-018-0070-7
Su, Z. et al. Neuron 83, 1043–1050 (2014).
doi: 10.1016/j.neuron.2014.07.041
Simone, R. et al. EMBO Mol. Med. 10, 22–31 (2017).
doi: 10.15252/emmm.201707850
Banez-Coronel, M. et al. Neuron 88, 667–677 (2015).
doi: 10.1016/j.neuron.2015.10.038
Osterwalder, T., Yoon, K. S., White, B. H. & Keshishian, H. Proc. Natl Acad. Sci. USA 98, 12596–12601 (2001).
doi: 10.1073/pnas.221303298
Son, E. Y. et al. Cell Stem Cell 9, 205–218 (2011).
doi: 10.1016/j.stem.2011.07.014