The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis.
Journal
PLoS genetics
ISSN: 1553-7404
Titre abrégé: PLoS Genet
Pays: United States
ID NLM: 101239074
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
24
04
2019
accepted:
22
07
2019
revised:
22
08
2019
pubmed:
14
8
2019
medline:
8
1
2020
entrez:
13
8
2019
Statut:
epublish
Résumé
TRAM is a conserved domain among RNA modification proteins that are widely distributed in various organisms. In Archaea, TRAM occurs frequently as a standalone protein with in vitro RNA chaperone activity; however, its biological significance and functional mechanism remain unknown. This work demonstrated that TRAM0076 is an abundant standalone TRAM protein in the genetically tractable methanoarcheaon Methanococcus maripaludis. Deletion of MMP0076, the gene encoding TRAM0076, markedly reduced the growth and altered transcription of 55% of the genome. Substitution mutations of Phe39, Phe42, Phe63, Phe65 and Arg35 in the recombinant TRAM0076 decreased the in vitro duplex RNA unfolding activity. These mutations also prevented complementation of the growth defect of the MMP0076 deletion mutant, indicating that the duplex RNA unfolding activity was essential for its physiological function. A genome-wide mapping of transcription start sites identified many 5' untranslated regions (5'UTRs) of 20-60 nt which could be potential targets of a RNA chaperone. TRAM0076 unfolded three representative 5'UTR structures in vitro and facilitated the in vivo expression of a mCherry reporter system fused to the 5'UTRs, thus behaving like a transcription anti-terminator. Flag-tagged-TRAM0076 co-immunoprecipitated a large number of cellular RNAs, suggesting that TRAM0076 plays multiple roles in addition to unfolding incorrect RNA structures. This work demonstrates that the conserved archaeal RNA chaperone TRAM globally affects gene expression and may represent a transcriptional element in ancient life of the RNA world.
Identifiants
pubmed: 31404065
doi: 10.1371/journal.pgen.1008328
pii: PGENETICS-D-19-00665
pmc: PMC6705878
doi:
Substances chimiques
5' Untranslated Regions
0
Archaeal Proteins
0
Molecular Chaperones
0
RNA, Archaeal
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1008328Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Mol Microbiol. 2001 Apr;40(1):179-88
pubmed: 11298285
Curr Opin Microbiol. 2010 Feb;13(1):24-33
pubmed: 20080057
Nat Microbiol. 2017 Mar 01;2:17021
pubmed: 28248297
FEMS Microbiol Lett. 2001 Apr 13;197(2):215-21
pubmed: 11313137
Nucleic Acids Res. 2009 Nov;37(20):6984-90
pubmed: 19745056
J Bacteriol. 2005 Feb;187(3):972-9
pubmed: 15659675
J Bacteriol. 2010 Mar;192(6):1511-7
pubmed: 20081030
Annu Rev Microbiol. 2014;68:357-76
pubmed: 25002089
J Biol Chem. 2002 Nov 29;277(48):46706-11
pubmed: 12324471
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6824-6829
pubmed: 28611217
Sci Rep. 2015 Mar 18;5:9209
pubmed: 25784521
Biochem Res Int. 2011;2011:532908
pubmed: 21234377
Nucleic Acids Res. 2012 Aug;40(14):e105
pubmed: 22492509
Front Microbiol. 2017 Aug 22;8:1597
pubmed: 28878753
J Bacteriol. 2009 Apr;191(7):2315-29
pubmed: 19168623
Elife. 2015 Jun 12;4:e08378
pubmed: 26067235
Nucleic Acids Res. 2017 Apr 20;45(7):4255-4268
pubmed: 28126922
J Biol Chem. 2007 Dec 7;282(49):35482-90
pubmed: 17921145
Curr Opin Microbiol. 2007 Apr;10(2):125-33
pubmed: 17395525
Nat Rev Microbiol. 2012 Mar 16;10(4):255-65
pubmed: 22421878
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7784-9
pubmed: 10884409
J Bacteriol. 1996 Aug;178(16):4919-25
pubmed: 8759856
Appl Environ Microbiol. 2011 Apr;77(7):2549-51
pubmed: 21296937
RNA Biol. 2010 Nov-Dec;7(6):788-95
pubmed: 21045540
PLoS Genet. 2012 Jun;8(6):e1002782
pubmed: 22761586
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5768-72
pubmed: 7597027
BMC Genet. 2007 Sep 24;8:61
pubmed: 17892563
Genome Biol. 2010;11(10):R106
pubmed: 20979621
PLoS Genet. 2008 Aug 22;4(8):e1000163
pubmed: 18725932
Adv Appl Microbiol. 2014;89:101-33
pubmed: 25131401
J Bacteriol. 2016 Jun 27;198(14):1906-1917
pubmed: 27137495
Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):10122-7
pubmed: 16788067
J Bacteriol. 2006 Apr;188(7):2521-7
pubmed: 16547039
Mol Cell. 2011 Sep 16;43(6):880-91
pubmed: 21925377
Environ Microbiol. 2016 Sep;18(9):2810-24
pubmed: 26769275
Mol Microbiol. 1999 Mar;31(5):1429-41
pubmed: 10200963
Plant Physiol. 2008 Jun;147(2):446-55
pubmed: 18524876
Genes Dev. 1990 Sep;4(9):1623-36
pubmed: 2253882
Mol Microbiol. 2000 Jun;36(5):1184-5
pubmed: 10844702
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21878-82
pubmed: 19996181
RNA Biol. 2011 May-Jun;8(3):394-7
pubmed: 21445001
Nucleic Acids Res. 2005 Oct 06;33(17):5583-90
pubmed: 16214801
Mol Cell. 2010 Jan 15;37(1):21-33
pubmed: 20129052
Sheng Wu Gong Cheng Xue Bao. 2019 Sep 25;35(9):1676-1685
pubmed: 31559749
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1826-31
pubmed: 18252828
Nature. 2008 Feb 14;451(7180):851-4
pubmed: 18235446
Brief Bioinform. 2013 Nov;14(6):671-83
pubmed: 22988256
J Biol Chem. 1997 Jan 3;272(1):196-202
pubmed: 8995247
Methods Enzymol. 2011;494:43-73
pubmed: 21402209