Single-cell RNA-seq identifies a reversible mesodermal activation in abnormally specified epithelia of p63 EEC syndrome.
Cleft Lip
/ genetics
Cleft Palate
/ genetics
Ectodermal Dysplasia
/ genetics
Epidermis
/ embryology
Epithelium
/ embryology
Gene Expression
Gene Expression Profiling
Humans
Immunohistochemistry
Induced Pluripotent Stem Cells
/ metabolism
Keratinocytes
/ metabolism
Mutation
Sequence Analysis, RNA
Single-Cell Analysis
Transcription Factors
/ genetics
Tumor Suppressor Proteins
/ genetics
EEC
cell fate commitment
p63
single-cell RNA-seq
stratified epithelia
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
27 08 2019
27 08 2019
Historique:
pubmed:
16
8
2019
medline:
31
3
2020
entrez:
16
8
2019
Statut:
ppublish
Résumé
Mutations in transcription factor p63 are associated with developmental disorders that manifest defects in stratified epithelia including the epidermis. The underlying cellular and molecular mechanism is however not yet understood. We established an epidermal commitment model using human induced pluripotent stem cells (iPSCs) and characterized differentiation defects of iPSCs derived from ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC) syndrome patients carrying p63 mutations. Transcriptome analyses revealed stepwise cell fate transitions during epidermal commitment: Specification from multipotent simple epithelium to basal stratified epithelia and ultimately to the mature epidermal fate. Differentiation defects of EEC iPSCs caused by p63 mutations occurred during the specification switch from the simple epithelium to the basal-stratified epithelial fate. Single-cell transcriptome and pseudotime analyses of cell states identified mesodermal activation that was associated with the deviated commitment route of EEC iPSCs. Integrated analyses of differentially regulated genes and p63-dependent dynamic genomic enhancers during epidermal commitment suggest that p63 directly controls epidermal gene activation at the specification switch and has an indirect effect on mesodermal gene repression. Importantly, inhibitors of mesodermal induction enhanced epidermal commitment of EEC iPSCs. Our findings demonstrate that p63 is required for specification of stratified epithelia, and that epidermal commitment defects caused by p63 mutations can be reversed by repressing mesodermal induction. This study provides insights into disease mechanisms underlying stratified epithelial defects caused by p63 mutations and suggests potential therapeutic strategies for the disease.
Identifiants
pubmed: 31413199
pii: 1908180116
doi: 10.1073/pnas.1908180116
pmc: PMC6717277
doi:
Substances chimiques
TP63 protein, human
0
Transcription Factors
0
Tumor Suppressor Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17361-17370Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Nature. 1999 Apr 22;398(6729):708-13
pubmed: 10227293
Nature. 1999 Apr 22;398(6729):714-8
pubmed: 10227294
Cell. 1999 Oct 15;99(2):143-53
pubmed: 10535733
Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3156-61
pubmed: 11248048
J Med Genet. 2002 Jun;39(6):377-81
pubmed: 12070241
Mol Pharmacol. 2004 Mar;65(3):520-7
pubmed: 14978230
J Pharmacol Exp Ther. 2005 Jul;314(1):383-90
pubmed: 15833899
Int J Biochem Cell Biol. 2006;38(10):1716-28
pubmed: 16765629
Cell Cycle. 2007 Feb 1;6(3):262-8
pubmed: 17224651
Cell Cycle. 2007 Feb 1;6(3):295-9
pubmed: 17264679
Cell Cycle. 2007 Feb 1;6(3):255-61
pubmed: 17297292
Cell. 2007 May 4;129(3):523-36
pubmed: 17482546
Cell Death Differ. 2009 Aug;16(8):1108-17
pubmed: 19300453
Nature. 2010 Jun 10;465(7299):704-12
pubmed: 20535199
Cell Death Differ. 2011 May;18(5):887-96
pubmed: 21127502
Mol Ther. 2011 Apr;19(4):782-9
pubmed: 21285961
Proc Natl Acad Sci U S A. 2011 May 24;108(21):8797-802
pubmed: 21555586
Oncogene. 2012 Jul 19;31(29):3457-66
pubmed: 22081067
Nat Protoc. 2012 Apr 05;7(5):813-28
pubmed: 22481528
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2157-62
pubmed: 23355676
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2152-6
pubmed: 23355677
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8105-10
pubmed: 23620512
Front Endocrinol (Lausanne). 2013 Aug 30;4:112
pubmed: 24009602
Dev Cell. 2014 Jan 27;28(2):147-60
pubmed: 24412575
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):E572-81
pubmed: 24449888
Nat Biotechnol. 2014 Apr;32(4):381-386
pubmed: 24658644
Nat Biotechnol. 2014 Sep;32(9):896-902
pubmed: 25150836
Curr Top Med Chem. 2016;16(20):2245-65
pubmed: 27072715
Biochem Biophys Res Commun. 2016 Sep 2;477(4):861-867
pubmed: 27387234
Nature. 2016 Sep 29;537(7622):698-702
pubmed: 27580035
Cell Stem Cell. 2017 Sep 7;21(3):399-410.e7
pubmed: 28886367
Cell Mol Life Sci. 2018 Apr;75(7):1179-1190
pubmed: 29103147
BMC Cancer. 2018 Apr 17;18(1):434
pubmed: 29665787
Nature. 2018 Apr;556(7702):463-468
pubmed: 29670281
J Biomech. 2018 Jun 6;74:134-142
pubmed: 29729854
Dev Cell. 2018 Oct 8;47(1):21-37.e5
pubmed: 30220568
Cell Stem Cell. 2018 Oct 4;23(4):586-598.e8
pubmed: 30290179
Nat Genet. 2018 Dec;50(12):1658-1665
pubmed: 30397335
Cell Stem Cell. 2019 Feb 7;24(2):271-284.e8
pubmed: 30686763
Mech Dev. 1994 Jan;45(1):73-87
pubmed: 8186150
J Mol Cell Cardiol. 1996 Jul;28(7):1523-9
pubmed: 8841939
Am J Pathol. 1997 Apr;150(4):1443-55
pubmed: 9094999
Science. 1998 Nov 6;282(5391):1145-7
pubmed: 9804556