Crisponi/cold-induced sweating syndrome: Differential diagnosis, pathogenesis and treatment concepts.
Ciliary Neurotrophic Factor Receptor alpha Subunit
/ genetics
Craniosynostoses
/ diagnosis
Cytokines
/ genetics
Death, Sudden
/ pathology
Diagnosis, Differential
Facies
Hand Deformities, Congenital
/ diagnosis
Humans
Hyperhidrosis
/ diagnosis
Intellectual Disability
/ diagnosis
Receptors, Cytokine
/ genetics
Retinitis Pigmentosa
/ diagnosis
Scoliosis
/ diagnosis
Trismus
/ congenital
CLCF1, KLHL7
CRLF1
MAGEL2
NALCN
SCN2A
Cold-induced sweating
Crisponi syndrome
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
20
06
2019
revised:
21
08
2019
accepted:
29
08
2019
pubmed:
10
9
2019
medline:
5
2
2021
entrez:
10
9
2019
Statut:
ppublish
Résumé
Crisponi/cold-induced sweating syndrome (CS/CISS) is an autosomal recessive disease characterized by hyperthermia, camptodactyly, feeding and respiratory difficulties often leading to sudden death in the neonatal period. The affected individuals who survived the first critical years of life, develop cold-induced sweating and scoliosis in early childhood. The disease is caused by variants in the CRLF1 or in the CLCF1 gene. Both proteins form a heterodimeric complex that acts on cells expressing the ciliary neurotrophic factor receptor (CNTFR). CS/CISS belongs to the family of "CNTFR-related disorders" showing a similar clinical phenotype. Recently, variants in other genes, including KLHL7, NALCN, MAGEL2 and SCN2A, previously linked to other diseases, have been associated with a CS/CISS-like phenotype. Therefore, retinitis pigmentosa and Bohring-Optiz syndrome-like (KLHL7), Congenital contractures of the limbs and face, hypotonia, and developmental delay syndrome (NALCN), Chitayat-Hall/Schaaf-Yang syndrome (MAGEL2), and early infantile epileptic encephalopathy-11 syndrome (SCN2A) all share an overlapping phenotype with CS/CISS, especially in the neonatal period. This review aims to summarize the existing literature on CS/CISS, focusing on the current state of differential diagnosis, pathogenesis and treatment concepts in order to achieve an accurate and rapid diagnosis. This will improve patient management and enable specific treatments for the affected individuals.
Substances chimiques
CLCF1 protein, human
0
CNTFR protein, human
0
Ciliary Neurotrophic Factor Receptor alpha Subunit
0
Cytokines
0
Receptors, Cytokine
0
cytokine-like factor-1
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
209-221Informations de copyright
© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Crisponi G. Autosomal recessive disorder with muscle contractions resembling neonatal tetanus, characteristic face, camptodactyly, hyperthermia, and sudden death: a new syndrome? Am J Med Genet. 1996;62:365-371.
Accorsi P, Giordano L, Faravelli F. Crisponi syndrome: report of a further patient. Am J Med Genet A. 2003;123A(2):183-185.
Nannenberg EA, Bijlmer R, Van Geel BM, Hennekam RC. Neonatal paroxysmal trismus and camptodactyly: the Crisponi syndrome. Am J Med Genet A. 2005;133A(1):90-92.
Crisponi L, Crisponi G, Meloni A, et al. Crisponi syndrome is caused by mutations in the CRLF1 gene and is allelic to cold-induced sweating syndrome type 1. Am J Hum Genet. 2007;80:971-981.
Herholz J, Crisponi L, Mallick BN, Rutsch F. Successful treatment of cold-induced sweating in Crisponi syndrome and its possible mechanism of action. Dev Med Child Neurol. 2010;52:494-497.
Sohar E, Shoenfeld Y, Udassin R, Magazanik A, Revach M. Cold-induced profuse sweating on back and chest. A new genetic entity? Lancet. 1978;2:1073-1074.
Hahn AF, Waaler PE, Kvistad PH, et al. Cold-induced sweating syndrome:CISS1 and CISS2: manifestations from infancy to adulthood. Four new cases. J Neurol Sci. 2010;293:68-75.
Knappskog PM, Majewski J, Livneh A, et al. Cold-induced sweating syndrome is caused by mutations in the CRLF1 gene. Am J Hum Genet. 2003;72:375-383.
Dagoneau N, Bellais S, Blanchet P, et al. Mutations in cytokine receptor-like factor 1 (CRLF1) account for both Crisponi and cold-induced sweating syndromes. Am J Hum Genet. 2007;80:966-970.
Herholz J, Meloni A, Marongiu M, et al. Differential secretion of the mutated protein is a major component affecting phenotypic severity in CRLF1-associated disorders. Eur J Hum Genet. 2011;19:525-533.
Hahn AF, Boman H. Cold-Induced Sweating Syndrome Including Crisponi Syndrome. GeneReviewsTM [Internet]: 1993-2013. Seattle, WA: University of Washington; 2011.
Hahn AF, Jones DL, Knappskog PM, Boman H, McLeod JG. Cold-induced sweating syndrome: a report of two cases and demonstration of genetic heterogeneity. J Neurol Sci. 2006;250:62-70.
Rousseau F, Gauchat JF, McLeod JG, et al. Inactivation of cardiotrophin-like cytokine, a second ligand for ciliary neurotrophic factor receptor, leads to cold-induced sweating syndrome in a patient. Proc Natl Acad Sci USA. 2006;103:10068-10073.
Dagoneau N, Scheffer D, Huber C, et al. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve-Wiedemann/Schwartz-Jampel type 2 syndrome. Am J Hum Genet. 2004;74:298-305.
Angius A, Uva P, Buers I, et al. Bi-allelic mutations in KLHL7 cause a Crisponi/CISS1-like phenotype associated with early-onset retinitis pigmentosa. Am J Hum Genet. 2016;99:236-245.
Angius A, Uva P, Oppo M, et al. Exome sequencing in Crisponi/CISS-like individuals reveals unpredicted alternative diagnoses. Clin Genet. 2019;95:607-614.
Piras R, Chiappe F, Torraca I, et al. Expanding the mutational spectrum of CRLF1 in Crisponi/CISS1 syndrome. Hum Mutat. 2014;35:424-433.
Okur I, Tumer L, Crisponi L, et al. Crisponi syndrome: a new case with additional features and new mutation in CRLF1. Am J Med Genet A. 2008;146A:3237-3239.
Thomas N, Danda S, Kumar M, et al. Crisponi syndrome in an Indian patient: a rare differential diagnosis for neonatal tetanus. Am J Med Genet A. 2008;146A:2831-2834.
Di Leo R, Nolano M, Boman H, et al. Central and peripheral autonomic failure in cold-induced sweating syndrome type 1. Neurology. 2010;75:1567-1569.
Yamazaki M, Kosho T, Kawachi S, et al. Cold-induced sweating syndrome with neonatal features of Crisponi syndrome: longitudinal observation of a patient homozygous for a CRLF1 mutation. Am J Med Genet A. 2010;152:764-769.
Cosar H, Kahramaner Z, Erdemir A, et al. Homozygous mutation of CRLF-1 gene in a Turkish newborn with Crisponi syndrome. Clin Dysmorphol. 2011;20:187-189.
Hakan N, Eminoglu FT, Aydin M, et al. Novel CRLF1 gene mutation in a newborn infant diagnosed with Crisponi syndrome. Congenit Anom (Kyoto). 2012;52:216-218.
González Fernández D, Lázaro Pérez M, Santillán Garzón S, et al. Cold-induced sweating syndrome type 1, with a CRLF1 level mutation, previously associated with Crisponi syndrome. Dermatology. 2013;227:126-129.
Uzunalic N, Zenciroglu A, Beken S, et al. Crisponi syndrome: a new mutation in CRLF1 gene associated with moderate outcome. Genet Couns. 2013;24:161-166.
Moortgat S, Benoit V, Deprez M, Charon A, Maystadt I. A new Turkish infant with clinical features of CS/CISS1 syndrome and homozygous CRLF1 mutation. Eur J Med Genet. 2014;57:212-215.
Alhashem AM, Majeed-Saidan MA, Ammari AN, et al. Crisponi/CISS1 syndrome: a case series. Am J Med Genet A. 2016;170A:1236-1241.
Bayraktar-Tanyeri B, Hepokur M, Bayraktar S, Persico I, Crisponi L. A new case series of Crisponi syndrome in a Turkish family and review of the literature. Clin Dysmorphol. 2017;26:66-72.
Tüysüz B, Kasapçopur O, Yalçınkaya C, Işık Haşıloğlu Z, Knappskog PM, Boman H. Multiple small hyperintense lesions in the subcortical white matter on cranial MR images in two Turkish brothers with cold-induced sweating syndrome caused by a novel missense mutation in the CRLF1 gene. Brain Dev. 2013;35:596-601.
Alallah J, Shawli A, Hakami F. A case report of Crisponi/cold-induced sweating syndrome 1 in a Saudi family. Case Rep. 2018;7:273-278.
den Dunnen JT, Dalgleish R, Maglott DR, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37:564-569.
Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat. 2008;29:6-13.
Dessì A, Fanos V, Crisponi G, Frau A, Ottonello G. Isolated ‘sign of the horns’: a simple, pathognomonic, prenatal sonographic marker of Crisponi syndrome. J Obstet Gynaecol Res. 2012;38:582-585.
Elson GC, Graber P, Losberger C, et al. Cytokine-like factor-1, a novel soluble protein, shares homology with members of the cytokine type I receptor family. J Immunol. 1998;161:1371-1379.
Elson GC, Lelièvre E, Guillet C, et al. CLF associates with CLC to form a functional heteromeric ligand for the CNTF receptor complex. Nat Neurosci. 2000;3:867-872.
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1-20.
Perret D, Guillet C, Elson G, et al. Two different contact sites are recruited by cardiotrophin-like cytokine (CLC) to generate the CLC/CLF and CLC/sCNTFRalpha composite cytokines. J Biol Chem. 2004;279:43961-43970.
Alexander WS, Rakar S, Robb L, et al. Suckling defect in mice lacking the soluble haemopoietin receptor NR6. Curr Biol. 1999;9:605-608.
Forger NG, Prevette D, de Lapeyrière O, et al. Cardiotrophin-like cytokine/cytokine-like factor 1 is an essential trophic factor for lumbar and facial motoneurons in vivo. J Neurosci. 2003;23:8854-8858.
DeChiara TM, Vejsada R, Poueymirou WT, et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell. 1995;83:313-322.
Li M, Sendtner M, Smith A. Essential function of LIF receptor in motor neurons. Nature. 1995;378:724-727.
Stanke M, Duong CV, Pape M, et al. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Biol Chem. 2006;270:10915-10922.
Francis NJ, Landis SC. Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci. 1999;22:541-566.
Kass DJ, Yu G, Loh KS, et al. Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. Am J Pathol. 2012;180:1963-1978.
Tsuritani K, Takeda J, Sakagami J, et al. Cytokine receptor-like factor 1 is highly expressed in damaged human knee osteoarthritic cartilage and involved in osteoarthritis downstream of TGF-beta. Calcif Tissue Int. 2010;86:47-57.
Detry S, Składanowska K, Vuylsteke M, Savvides SN, Bloch Y. Revisiting the combinatorial potential of cytokine subunits in the IL-12 family. Biochem Pharmacol. 2019;165:240-248.
Yu ST, Zhong Q, Chen RH, et al. CRLF1 promotes malignant phenotypes of papillary thyroid carcinoma by activating the MAPK/ERK and PI3K/AKT pathways. Cell Death Dis. 2018;9:371.
Crabé S, Guay-Giroux A, Tormo AJ, et al. The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling. J Immunol. 2009;183:7692-7702.
Larsen JV, Kristensen AM, Pallesen LT, et al. Cytokine-like factor 1, an essential facilitator of cardiotrophin-like cytokine: ciliary neurotrophic factor receptor α signaling and sorLA-mediated turnover. Mol Cell Biol. 2016;36:1272-1286.
Larsen JV, Petersen CM. SorLA in interleukin-6 signaling and turnover. Mol Cell Biol. 2017;37:e00641.
Angius A, Uva P, Buers I, et al. Bi-allelic mutations in KLHL7 cause a Crisponi/CISS1-like phenotype associated with early-onset retinitis pigmentosa. Am J Hum Genet. 2018;102:713.
Kigoshi Y, Tsuruta F, Chiba T. Ubiquitin ligase activity of Cul3-KLHL7 protein is attenuated by autosomal dominant retinitis pigmentosa causative mutation. J Biol Chem. 2011;286:33613-33621.
Friedman JS, Ray JW, Waseem N, et al. Mutations in a BTB-Kelch protein, KLHL7, cause autosomal-dominant retinitis pigmentosa. Am J Hum Genet. 2009;84:792-800.
Bruel AL, Bigoni S, Kennedy J, et al. Expanding the clinical spectrum of recessive truncating mutations of KLHL7 to a Bohring-Opitz-like phenotype. J Med Genet. 2017;54:830-835.
Kanthi A, Hebbar M, Bielas SL, Girisha KM, Shukla A. Bi-allelic c.181_183delTGT in BTB domain of KLHL7 is associated with overlapping phenotypes of Crisponi/CISS1-like and Bohring-Opitz like syndrome. Eur J Med Genet. 2018;62:103528.
Jeffries L, Olivieri JE, Ji W, et al. Two siblings with a novel nonsense variant provide further delineation of the spectrum of recessive KLHL7 diseases. Eur J Med Genet. 2018;103551(18):30080-30086.
Heng LZ, Kennedy J, Smithson S, Newbury-Ecob R, Churchill A. New macular findings in individuals with biallelic KLHL7 gene mutation. BMJ Open Ophthalmol. 2019;4:e000234.
Stüve A, Wiedemann HR. Congenital bowing of the long bones in two sisters. Lancet. 1971;2:495.
Jung C, Dagoneau N, Baujat G, et al. Stüve-Wiedemann syndrome: long-term follow-up and genetic heterogeneity. Clin Genet. 2010;77:266-272.
Gaspar IM, Saldanha T, Cabral P, et al. Long-term follow-up in Stuve-Wiedemann syndrome: a clinical report. Am J Med Genet A. 2008;146A:1748-1753.
Di Rocco M, Stella G, Bruno C, Doria Lamba L, Bado M, Superti-Furga A. Long-term survival in Stuve-Wiedemann syndrome: a neuro-myo-skeletal disorder with manifestations of dysautonomia. Am J Med Genet A. 2003;118A:362-368.
Dietz V, Milstien JB, van Loon F, Cochi S, Bennett J. Performance and potency of tetanus toxoid: implications for eliminating neonatal tetanus. Bull World Health Organ. 1996;74:619-628.
Kerr JH, Corbett JL, Prys-Roberts C, Smith AC, Spalding JM. Involvement of the sympathetic nervous system in tetanus. Studies on 82 cases. Lancet. 1968;2:236-241.
Cook M, Protheroe RT, Handel JM. Tetanus: a review of the literature. Br J Anaesth. 2001;87:477-487.
Chong JX, McMillin MJ, Shively KM, et al. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay. Am J Hum Genet. 2015;96:462-473.
Schaaf CP, Gonzalez-Garay ML, Xia F, et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet. 2013;45:1405-1408.
Jobling R, Stavropoulos DJ, Marshall CR, et al. Chitayat-Hall and Schaaf-Yang syndromes: a common aetiology: expanding the phenotype of MAGEL2-related disorders. J Med Genet. 2018;55:316-321.
Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet. 2010;19:4895-4905.
Ogiwara I, Ito K, Sawaishi Y, et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology. 2009;73:1046-1053.
Shi X, Yasumoto S, Kurahashi H, et al. Clinical spectrum of SCN2A mutations. Brain Dev. 2012;34:541-545.
Rafiq M, Almasry S, Abdulrahman A, Al-Sohabani M, Tobias JD. Perioperative care of a child with Crisponi syndrome. Middle East J Anaesthesiol. 2016;23:563-567.
CRLF1; LOVD; Version v.3.0 Build 21d. [Dataset] Insa Buers; April 29, 2010.