Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere.


Journal

Nature ecology & evolution
ISSN: 2397-334X
Titre abrégé: Nat Ecol Evol
Pays: England
ID NLM: 101698577

Informations de publication

Date de publication:
10 2019
Historique:
received: 03 04 2019
accepted: 21 08 2019
entrez: 28 9 2019
pubmed: 29 9 2019
medline: 18 12 2019
Statut: ppublish

Résumé

Multicellular organisms, including plants, are colonized by microorganisms, some of which are beneficial to growth and health. The assembly rules for establishing plant microbiota are not well understood, and neither is the extent to which their members interact. We conducted drop-out and late introduction experiments by inoculating Arabidopsis thaliana with synthetic communities from a resource of 62 native bacterial strains to test how arrival order shapes community structure. As a read-out we tracked the relative abundance of all strains in the phyllosphere of individual plants. Our results showed that community assembly is historically contingent and subject to priority effects. Missing strains could, to various degrees, invade an already established microbiota, which was itself resistant and remained largely unaffected by latecomers. Additionally, our results indicate that individual strains of Proteobacteria (Sphingomonas, Rhizobium) and Actinobacteria (Microbacterium, Rhodococcus) have the greatest potential to affect community structure as keystone species.

Identifiants

pubmed: 31558832
doi: 10.1038/s41559-019-0994-z
pii: 10.1038/s41559-019-0994-z
pmc: PMC6774761
mid: EMS84180
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1445-1454

Subventions

Organisme : European Research Council
ID : 668991
Pays : International

Commentaires et corrections

Type : CommentIn

Références

Fischbach, M. A. Microbiome: focus on causation and mechanism. Cell 174, 785–790 (2018).
doi: 10.1016/j.cell.2018.07.038
Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Müller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).
doi: 10.1016/j.chom.2017.07.004
Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).
doi: 10.15252/msb.20178157
Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
doi: 10.1038/s41559-017-0109
Müller, D. B., Schubert, O. T., Röst, H., Aebersold, R. & Vorholt, J. A. Systems-level proteomics of two ubiquitous leaf commensals reveals complementary adaptive traits for phyllosphere colonization. Mol. Cell Proteom. 15, 3256–3269 (2016).
doi: 10.1074/mcp.M116.058164
Gourion, B., Rossignol, M. & Vorholt, J. A. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl Acad. Sci. USA 103, 13186–13191 (2006).
doi: 10.1073/pnas.0603530103
Abreu, C., Ortiz Lopez, A. & Gore, J. Pairing off: a bottom-up approach to the human gut microbiome. Mol. Syst. Biol. 14, e8425 (2018).
doi: 10.15252/msb.20188425
Brugiroux, S. et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat. Microbiol. 2, 16215 (2016).
doi: 10.1038/nmicrobiol.2016.215
Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).
doi: 10.1073/pnas.1102938108
Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
doi: 10.1016/j.mib.2017.12.009
Rawls, J. F., Samuel, B. S. & Gordon, J. I. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl Acad. Sci. USA 101, 4596–4601 (2004).
doi: 10.1073/pnas.0400706101
Bodenhausen, N., Bortfeld-Miller, M., Ackermann, M. & Vorholt, J. A. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet. 10, e1004283 (2014).
doi: 10.1371/journal.pgen.1004283
Lebeis, S. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).
doi: 10.1126/science.aaa8764
Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).
doi: 10.1073/pnas.1616148114
Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).
doi: 10.1371/journal.pbio.2003962
Bai, Y. et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364–369 (2015).
doi: 10.1038/nature16192
Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).
doi: 10.1146/annurev-genet-120215-034952
Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).
doi: 10.1038/nrmicro2910
Meyer, K. M. & Leveau, J. H. Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia 168, 621–629 (2012).
doi: 10.1007/s00442-011-2138-2
Woodward, F. I. & Lomas, M. R. Vegetation dynamics—simulating responses to climatic change. Biol. Rev. 79, 643–670 (2004).
doi: 10.1017/S1464793103006419
Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210 (2011).
doi: 10.1128/AEM.00133-11
Ritpitakphong, U. et al. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol. 210, 1033–1043 (2016).
doi: 10.1111/nph.13808
Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).
doi: 10.1371/journal.pbio.2001793
Knief, C., Ramette, A., Frances, L., Alonso-Blanco, C. & Vorholt, J. A. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728 (2010).
doi: 10.1038/ismej.2010.9
Laforest-Lapointe, I. & Whitaker, B. K. Decrypting the phyllosphere microbiota: progress and challenges. Am. J. Bot. 106, 171–173 (2019).
pubmed: 30726571
Copeland, J. K., Yuan, L., Layeghifard, M., Wang, P. W. & Guttman, D. S. Seasonal community succession of the phyllosphere microbiome. Mol. Plant Microbe Interact. 28, 274–285 (2015).
doi: 10.1094/MPMI-10-14-0331-FI
Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4, 27 (2016).
doi: 10.1186/s40168-016-0174-1
Kembel, S. W. et al. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl Acad. Sci. USA 111, 13715–13720 (2014).
doi: 10.1073/pnas.1216057111
Horton, M. W. et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5, 5320 (2014).
doi: 10.1038/ncomms6320
Redford, A. J., Bowers, R. M., Knight, R., Linhart, Y. & Fierer, N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12, 2885–2893 (2010).
doi: 10.1111/j.1462-2920.2010.02258.x
Finkel, O. M., Burch, A. Y., Lindow, S. E., Post, A. F. & Belkin, S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl. Environ. Microbiol. 77, 7647–7655 (2011).
doi: 10.1128/AEM.05565-11
Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
doi: 10.1146/annurev-ecolsys-110411-160340
Chase, J. M. Community assembly: when should history matter? Oecologia 136, 489–498 (2003).
doi: 10.1007/s00442-003-1311-7
Peay, K. G., Belisle, M. & Fukami, T. Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. 279, 749–758 (2012).
doi: 10.1098/rspb.2011.1230
Werner, G. D. & Kiers, E. T. Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol. 205, 1515–1524 (2015).
doi: 10.1111/nph.13092
Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).
doi: 10.1111/j.1461-0248.2010.01465.x
Hiscox, J. et al. Priority effects during fungal community establishment in beech wood. ISME J. 9, 2246–2260 (2015).
doi: 10.1038/ismej.2015.38
van Gremberghe, I. et al. Priority effects in experimental populations of the cyanobacterium Microcystis. Environ. Microbiol. 11, 2564–2573 (2009).
doi: 10.1111/j.1462-2920.2009.01981.x
Adame-Alvarez, R. M., Mendiola-Soto, J. & Heil, M. Order of arrival shifts endophyte-pathogen interactions in bean from resistance induction to disease facilitation. FEMS Microbiol. Lett. 355, 100–107 (2014).
doi: 10.1111/1574-6968.12454
Braun-Kiewnick, A., Jacobsen, B. & Sands, D. Biological control of Pseudomonas syringae pv. syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90, 368–375 (2000).
doi: 10.1094/PHYTO.2000.90.4.368
Wilson, M. & Lindow, S. E. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83, 117–123 (1992).
doi: 10.1094/Phyto-83-117
Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5, e00682–00613 (2014).
doi: 10.1128/mBio.00682-13
Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. USA 106, 16428–16433 (2009).
doi: 10.1073/pnas.0905240106
Bodenhausen, N., Horton, M. W. & Bergelson, J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8, e56329 (2013).
doi: 10.1371/journal.pone.0056329
Rottjers, L. & Faust, K. From hairballs to hypotheses—biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).
doi: 10.1093/femsre/fuy030
Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983 (2018).
doi: 10.1016/j.cell.2018.10.020
Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).
doi: 10.1371/journal.pbio.1002352
Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).
doi: 10.1371/journal.pcbi.1002606
Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).
doi: 10.1038/nrmicro2832
Rottjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).
doi: 10.1038/s41579-018-0132-y
Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).
doi: 10.1371/journal.pone.0034242
Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).
doi: 10.1126/science.1208344
Hall, A. B., Tolonen, A. C. & Xavier, R. J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18, 690–699 (2017).
doi: 10.1038/nrg.2017.63
Martinez, I. et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. eLife 7, e36521 (2018).
doi: 10.7554/eLife.36521
Kinkel, L. L. & Lindow, S. E. Invasion and exclusion among coexisting Pseudomonas syringae strains on leaves. Appl. Environ. Microbiol. 59, 3447–3454 (1993).
pubmed: 16349074 pmcid: 182472
Lindow, S. E., Arny, D. C. & Upper, C. D. Biological control of frost injury: an isolate of Erwinia herbicola antagonistic to ice nucleation active bacteria. Phytopathology 73, 1097–1102 (1983).
doi: 10.1094/Phyto-73-1097
Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11, 853–862 (2017).
doi: 10.1038/ismej.2016.174
Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).
doi: 10.1073/pnas.0605127103
Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).
doi: 10.1038/nrmicro3400
Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371–01314 (2014).
doi: 10.1128/mBio.01371-14
Chelius, M. K. & Triplett, E. W. The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb. Ecol. 41, 252–263 (2001).
doi: 10.1007/s002480000087
Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).
doi: 10.1038/nature11336
Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
doi: 10.1128/AEM.01541-09
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
doi: 10.1093/bioinformatics/btq461
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
doi: 10.1038/nmeth.2604
Pruesse, E., Peplies, J. & Glockner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).
doi: 10.1093/bioinformatics/bts252
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).
doi: 10.1093/sysbio/syq010
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8

Auteurs

Charlotte I Carlström (CI)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Christopher M Field (CM)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Miriam Bortfeld-Miller (M)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Barbara Müller (B)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Shinichi Sunagawa (S)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland.

Julia A Vorholt (JA)

Institute of Microbiology, ETH Zurich, Zurich, Switzerland. jvorholt@ethz.ch.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH