TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands.
Adolescent
Adult
Chromosome Aberrations
Down Syndrome
/ diagnosis
Female
Follow-Up Studies
Genetic Testing
/ methods
Genome, Human
Health Plan Implementation
Humans
Middle Aged
Netherlands
/ epidemiology
Pregnancy
Pregnancy Trimester, First
Prenatal Diagnosis
/ methods
Prognosis
Trisomy 13 Syndrome
/ diagnosis
Trisomy 18 Syndrome
/ diagnosis
Young Adult
NIPS
NIPT
cfDNA
common trisomies
fetal trisomy
first tier test
genome-wide
implementation study
prenatal screening
rare autosomal trisomies
Journal
American journal of human genetics
ISSN: 1537-6605
Titre abrégé: Am J Hum Genet
Pays: United States
ID NLM: 0370475
Informations de publication
Date de publication:
05 12 2019
05 12 2019
Historique:
received:
24
06
2019
accepted:
02
10
2019
pubmed:
12
11
2019
medline:
3
4
2020
entrez:
12
11
2019
Statut:
ppublish
Résumé
The Netherlands launched a nationwide implementation study on non-invasive prenatal testing (NIPT) as a first-tier test offered to all pregnant women. This started on April 1, 2017 as the TRIDENT-2 study, licensed by the Dutch Ministry of Health. In the first year, NIPT was performed in 73,239 pregnancies (42% of all pregnancies), 7,239 (4%) chose first-trimester combined testing, and 54% did not participate. The number of trisomies 21 (239, 0.33%), 18 (49, 0.07%), and 13 (55, 0.08%) found in this study is comparable to earlier studies, but the Positive Predictive Values (PPV)-96% for trisomy 21, 98% for trisomy 18, and 53% for trisomy 13-were higher than expected. Findings other than trisomy 21, 18, or 13 were reported on request of the pregnant women; 78% of women chose to have these reported. The number of additional findings was 207 (0.36%); these included other trisomies (101, 0.18%, PPV 6%, many of the remaining 94% of cases are likely confined placental mosaics and possibly clinically significant), structural chromosomal aberrations (95, 0.16%, PPV 32%,) and complex abnormal profiles indicative of maternal malignancies (11, 0.02%, PPV 64%). The implementation of genome-wide NIPT is under debate because the benefits of detecting other fetal chromosomal aberrations must be balanced against the risks of discordant positives, parental anxiety, and a potential increase in (invasive) diagnostic procedures. Our first-year data, including clinical data and laboratory follow-up data, will fuel this debate. Furthermore, we describe how NIPT can successfully be embedded into a national screening program with a single chain for prenatal care including counseling, testing, and follow-up.
Identifiants
pubmed: 31708118
pii: S0002-9297(19)30393-3
doi: 10.1016/j.ajhg.2019.10.005
pmc: PMC6904791
pii:
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1091-1101Informations de copyright
Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Références
J Perinat Med. 2012 Jan 06;40(3):215-23
pubmed: 22505498
Ann Oncol. 2019 Jan 1;30(1):85-95
pubmed: 30371735
Placenta. 2011 Sep;32(9):699-703
pubmed: 21733574
Ann Oncol. 2012 Dec;23(12):3098-103
pubmed: 22745215
Prenat Diagn. 2017 Jul;37(7):699-704
pubmed: 28497584
Acta Obstet Gynecol Scand. 2015 Jun;94(6):577-83
pubmed: 25597330
Hum Mutat. 2017 Jul;38(7):880-888
pubmed: 28409863
PLoS One. 2016 Apr 05;11(4):e0153147
pubmed: 27045195
Genet Med. 2018 Apr;20(5):480-485
pubmed: 29121006
J Community Genet. 2012 Apr;3(2):79-89
pubmed: 22109908
Prenat Diagn. 2018 Feb;38(3):160-165
pubmed: 29417608
Prenat Diagn. 2017 Jun;37(6):593-601
pubmed: 28423190
Sci Transl Med. 2017 Aug 30;9(405):
pubmed: 28855395
Genet Med. 2018 Nov;20(11):1472-1476
pubmed: 29493577
BMJ Open. 2016 Jan 18;6(1):e010002
pubmed: 26781507
Genet Med. 2017 Feb;19(2):169-175
pubmed: 27362910
Prenat Diagn. 2015 Jun;35(6):598-604
pubmed: 25693726
Eur J Hum Genet. 2016 Jul;24(7):968-75
pubmed: 26577044
Clin Genet. 2015 Jul;88(1):25-31
pubmed: 25134982
Ultrasound Obstet Gynecol. 2017 Sep;50(3):302-314
pubmed: 28397325
Genet Med. 2017 Dec;19(12):1338-1345
pubmed: 28518169
BMC Health Serv Res. 2017 Sep 19;17(1):670
pubmed: 28927451
Prenat Diagn. 2016 Dec;36(12):1083-1090
pubmed: 27750376
BMC Health Serv Res. 2014 Sep 25;14:437
pubmed: 25257793
Eur J Hum Genet. 2015 Oct;23(10):1286-93
pubmed: 25585704
Sci Transl Med. 2014 Apr 9;6(231):231fs15
pubmed: 24718856
PLoS One. 2018 Apr 12;13(4):e0195905
pubmed: 29649318
Genet Med. 2016 Oct;18(10):1056-65
pubmed: 27467454
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5302-11
pubmed: 25427797
J Gynecol Obstet Hum Reprod. 2017 Dec;46(10):701-713
pubmed: 29031048
N Engl J Med. 2018 Aug 2;379(5):464-473
pubmed: 30067923
Blood. 2016 May 19;127(20):2391-405
pubmed: 27069254
J Matern Fetal Neonatal Med. 2020 Apr;33(8):1412-1418
pubmed: 30269633
Prenat Diagn. 2016 Aug;36(8):790-3
pubmed: 27328203
Lancet. 1997 Aug 16;350(9076):485-7
pubmed: 9274585
Genet Med. 2017 Dec;19(12):1332-1337
pubmed: 28617416
Expert Rev Mol Diagn. 2016;16(5):513-20
pubmed: 26864482
Ultrasound Obstet Gynecol. 2018 Apr;51(4):429-433
pubmed: 29363829
Prenat Diagn. 2012 Dec;32(13):1305-12
pubmed: 23138694
Prenat Diagn. 2018 Jan;38(1):20-25
pubmed: 28695688
Prenat Diagn. 2017 Aug;37(8):769-773
pubmed: 28561435
Nucleic Acids Res. 2014 Mar;42(5):e31
pubmed: 24170809
Nature. 2017 Oct 11;550(7675):179-181
pubmed: 29022931