Rapid Identification of Protein-Protein Interactions in Plants.

affinity purification mass spectrometry fold change abundance protein-protein interaction

Journal

Current protocols in plant biology
ISSN: 2379-8068
Titre abrégé: Curr Protoc Plant Biol
Pays: United States
ID NLM: 101685882

Informations de publication

Date de publication:
12 2019
Historique:
entrez: 13 11 2019
pubmed: 13 11 2019
medline: 13 3 2020
Statut: ppublish

Résumé

Enzyme-enzyme interactions can be discovered by affinity purification mass spectrometry (AP-MS) under in vivo conditions. Tagged enzymes can either be transiently transformed into plant leaves or stably transformed into plant cells prior to AP-MS. The success of AP-MS depends on the levels and stability of the bait protein, the stability of the protein-protein interactions, and the efficiency of trypsin digestion and recovery of tryptic peptides for MS analysis. Unlike in-gel-digestion AP-MS, in which the gel is cut into pieces for several independent trypsin digestions, we uses a proteomics-based in-solution digestion method to directly digest the proteins on the beads following affinity purification. Thus, a single replicate within an AP-MS experiment constitutes a single sample for LC-MS measurement. In subsequent data analysis, normalized signal intensities can be processed to determine fold-change abundance (FC-A) scores by use of the SAINT algorithm embedded within the CRAPome software. Following analysis of co-sublocalization of "bait" and "prey," we suggest considering only the protein pairs for which the intensities were more than 2% compared with the bait, corresponding to FC-A values of at least four within-biological replicates, which we recommend as minimum. If the procedure is faithfully followed, experimental assessment of enzyme-enzyme interactions can be carried out in Arabidopsis within 3 weeks (transient expression) or 5 weeks (stable expression). © 2019 The Authors. Basic Protocol 1: Gene cloning to the destination vectors Alternate Protocol: In-Fusion or Gibson gene cloning protocol Basic Protocol 2: Transformation of baits into the plant cell culture or plant leaf Basic Protocol 3: Affinity purification of protein complexes Basic Protocol 4: On-bead trypsin/LysC digestion and C18 column peptide desalting and concentration Basic Protocol 5: Data analysis and quality control.

Identifiants

pubmed: 31714676
doi: 10.1002/cppb.20099
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e20099

Informations de copyright

© 2019 The Authors.

Références

Adelmant, G., Garg, B. K., Tavares, M., Card, J. D., & Marto, J. A. (2019). Tandem affinity purification and mass spectrometry (TAP-MS) for the analysis of protein complexes. Current Protocols in Protein Science, 96, e84. doi: 10.1002/cpps.84.
Antrobus, R., & Borner, G. H. (2011). Improved elution conditions for native co-immunoprecipitation. PloS One, 6(3), e18218. doi: 10.1371/journal.pone.0018218.
Bontinck, M., Van Leene, J., Gadeyne, A., De Rybel, B., Eeckhout, D., Nelissen, H., & De Jaeger, G. (2018). Recent trends in plant protein complex analysis in a developmental context. Frontiers in Plant Science, 9, 640. doi: 10.3389/fpls.2018.00640.
Bürckstümmer, T., Bennett, K. L., Preradovic, A., Schütze, G., Hantschel, O., Superti-Furga, G., & Bauch, A. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature Methods, 3(12), 1013-1019. doi: 10.1038/nmeth968.
Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., … Zhou, J.-M. (2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology, 146(2), 368-376. doi: 10.1104/pp.107.111740.
Choi, H., Larsen, B., Lin, Z.-Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D., … Nesvizhskii, A. I. (2011). SAINT: Probabilistic scoring of affinity purification-Mass spectrometry data. Nature Methods, 8(1), 70-73. doi: 10.1038/nmeth.1541.
Current Protocols. (2001). Common stock solutions, buffer, and media. Current Protocols in Cytometry, 9, A.2A.1-A.2A.4. doi: 10.1002/0471142956.cya02as09.
Curtis, M. D., & Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiology, 133(2), 462-469. doi: 10.1104/pp.103.027979.
Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576-1590. doi: 10.1002/pmic.201100523.
Fujikawa, Y., & Kato, N. (2007). Technical advance: Split luciferase complementation assay to study protein interactions in Arabidopsis protoplasts. The Plant Journal, 52(1), 185-195. doi: 10.1111/j.1365-313X.2007.03214.x.
Grefen, C., Donald, N., Hashimoto, K., Kudla, J., Schumacher, K., & Blatt, M. R. (2010). A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. The Plant Journal, 64(2), 355-365. doi: 10.1111/j.1365-313X.2010.04322.x.
Hartwell, L. H., Hopfield, J. J., Leibler, S., & Murray, A. W. (1999). From molecular to modular cell biology. Nature, 402(6761 Suppl), C47-C52. doi: 10.1038/35011540.
Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi: 10.1093/nar/gkw1041.
Huang, H., Alvarez, S., Bindbeutel, R., Shen, Z., Naldrett, M. J., Evans, B. S., … Nusinow, D. A. (2016). Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Molecular & Cellular Proteomics, 15(1), 201-217.
Katzen, F. (2007). Gateway® recombinational cloning: A biological operating system. Expert Opinion on Drug Discovery, 2(4), 571-589. doi: 10.1517/17460441.2.4.571.
Keilhauer, E. C., Hein, M. Y., & Mann, M. (2015). Accurate protein complex retrieval by affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass spectrometry (AP-MS). Molecular & Cellular Proteomics, 14(1), 120-135.
Kerppola, T. K. (2008). Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annual Review of Biophysics, 37, 465-487. doi: 10.1146/annurev.biophys.37.032807.125842.
Lazo, G. R., Stein, P. A., & Ludwig, R. A. (1991). A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology, 9(10), 963-967. doi: 10.1038/nbt1091-963.
León, I. R., Schwämmle, V., Jensen, O. N., & Sprenger, R. R. (2013). Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Molecular & Cellular Proteomics, 12(10), 2992-3005.
Li, J.-F., Bush, J., Xiong, Y., Li, L., & McCormack, M. (2011). Large-scale protein-protein interaction analysis in Arabidopsis mesophyll protoplasts by split firefly luciferase complementation. PloS One, 6(11), e27364. doi: 10.1371/journal.pone.0027364.
Mellacheruvu, D., Wright, Z., Couzens, A. L., Lambert, J.-P., St-Denis, N. A., Li, T., … Low, T. Y. (2013). The CRAPome: A contaminant repository for affinity purification-Mass spectrometry data. Nature Methods, 10(8), 730-736. doi: 10.1038/nmeth.2557.
Menges, M., & Murray, J. A. (2002). Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. The Plant Journal, 30(2), 203-212. doi: 10.1046/j.1365-313X.2002.01274.x.
Morris, J. H., Knudsen, G. M., Verschueren, E., Johnson, J. R., Cimermancic, P., Greninger, A. L., & Pico, A. R. (2014). Affinity purification-Mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 9(11), 2539-2554. doi: 10.1038/nprot.2014.164.
Oeffinger, M. (2012). Two steps forward-one step back: Advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics, 12(10), 1591-1608. doi: 10.1002/pmic.201100509.
Parrish, J. R., Gulyas, K. D., & Finley, Jr, R. L. (2006). Yeast two-hybrid contributions to interactome mapping. Current Opinion in Biotechnology, 17(4), 387-393. doi: 10.1016/j.copbio.2006.06.006.
Perkins, J. R., Diboun, I., Dessailly, B. H., Lees, J. G., & Orengo, C. (2010). Transient protein-protein interactions: Structural, functional, and network properties. Structure, 18(10), 1233-1243. doi: 10.1016/j.str.2010.08.007.
Puig, O., Caspary, F., Rigaut, G., Rutz, B., Bouveret, E., Bragado-Nilsson, E., … Séraphin, B. (2001). The tandem affinity purification (TAP) method: A general procedure of protein complex purification. Methods, 24(3), 218-229. doi: 10.1006/meth.2001.1183.
Rajwa, B. (2005). Modern confocal microscopy. Current Protocols in Cytometry, 31, 12.3.1-12.3.12. doi: 10.1002/0471142956.cy1203s31 .
Sanchez-Serrano, J. J., & Salinas, J. (2014). Arabidopsis protocols. New York: Humana Press.
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., … Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504.doi: 10.1101/gr.1239303.
Shendure, J. A., Porreca, G. J., Church, G. M., Gardner, A. F., Hendrickson, C. L., Kieleczawa, J., … Slatko, B.E. (2011). Overview of DNA sequencing strategies. Current Protocols in Molecular Biology, 96, 7.1.1-7.1.23. doi: 10.1002/0471142727.mb0701s96.
Van Leene, J., Eeckhout, D., Cannoot, B., De Winne, N., Persiau, G., Van De Slijke, E., … Vandepoele, K. (2015). An improved toolbox to unravel the plant cellular machinery by tandem affinity purification of Arabidopsis protein complexes. Nature Protocols, 10(1), 169-187. doi: 10.1038/nprot.2014.199.
Varjosalo, M., Sacco, R., Stukalov, A., Van Drogen, A., Planyavsky, M., Hauri, S., … Gstaiger, M. (2013). Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nature Methods, 10(4), 307-314. doi: 10.1038/nmeth.2400.
Walhout, A. J., Temple, G. F., Brasch, M. A., Hartley, J. L., Lorson, M. A., van den Heuvel, S., & Vidal, M. (2000). GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods in Enzymology, 328, 575-592.
Voytas, D. (2000). Agarose gel electrophoresis. Current Protocols in Molecular Biology, 51, 2.5A.1−2.5A.9. doi: 10.1002/0471142727.mb0205as51.
Zhang, Y., Beard, K. F., Swart, C., Bergmann, S., Krahnert, I., Nikoloski, Z., … Fernie, A. R. (2017). Protein-protein interactions and metabolite channeling in the plant tricarboxylic acid cycle. Nature Communications, 8, 15212. doi: 10.1038/ncomms15212.
Zhang, Y., Sun, H., Zhang, J., Brasier, A. R., & Zhao, Y. (2017). Quantitative assessment of the effects of trypsin digestion methods on affinity purification-Mass spectrometry-based protein-protein interaction analysis. Journal of Proteome Research, 16(8), 3068-3082. doi: 10.1021/acs.jproteome.7b00432.
Zhang, Y., Swart, C., Alseekh, S., Scossa, F., Jiang, L., Obata, T., … Fernie, A. R. (2018). The extra-pathway interactome of the TCA cycle: Expected and unexpected metabolic interactions. Plant Physiology, 177(3), 966-979. doi: 10.1104/pp.17.01687.

Auteurs

Youjun Zhang (Y)

Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

Roberto Natale (R)

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.

Adilson Pereira Domingues (AP)

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
Department of Crop Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, Brazil.

Mitchell Rey Toleco (MR)

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

Beata Siemiatkowska (B)

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

Norma Fàbregas (N)

Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

Alisdair R Fernie (AR)

Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.

Articles similaires

Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
Humans Arthritis, Rheumatoid Lipid Metabolism Male Female
Humans Induced Pluripotent Stem Cells Schizophrenia Neural Stem Cells DNA Damage

Classifications MeSH