ICETh1 and ICETh2, two interdependent mobile genetic elements in Thermus thermophilus transjugation.
Journal
Environmental microbiology
ISSN: 1462-2920
Titre abrégé: Environ Microbiol
Pays: England
ID NLM: 100883692
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
23
08
2019
revised:
10
10
2019
accepted:
17
10
2019
pubmed:
13
11
2019
medline:
10
9
2020
entrez:
13
11
2019
Statut:
ppublish
Résumé
Cell to cell DNA transfer between Thermus thermophilus, or transjugation, requires the natural competence apparatus (NCA) of the recipient cell and a DNA donation machinery in the donor. In T. thermophilus HB27, two mobile genetic elements with functional similarities to Integrative and Conjugative Elements (ICEs) coexist, ICETh1 encoding the DNA transfer apparatus and ICETh2, encoding a putative replication module. Here, we demonstrate that excision and integration of both elements depend on a single tyrosine recombinase encoded by ICETh2, and that excision is not required but improves the transfer of these elements to a recipient cell. These findings along with previous results suggest that ICETh1 and ICETh2 depend on each other for spreading among T. thermophilus by transjugation.
Identifiants
pubmed: 31715642
doi: 10.1111/1462-2920.14833
doi:
Substances chimiques
Recombinases
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
158-169Subventions
Organisme : Fundación Ramón Areces
ID : -
Pays : International
Organisme : Natural Sciences and Engineering Council of Canada
ID : 2016-04365
Pays : International
Organisme : Spanish Ministry of Science, Innovation and Universities
ID : BIO2016-77031-R
Pays : International
Informations de copyright
© 2019 Society for Applied Microbiology and John Wiley & Sons Ltd.
Références
Acosta, F., Alvarez, L., de Pedro, M.A., and Berenguer, J. (2012) Localized synthesis of the outer envelope from Thermus thermophilus. Extremophiles 16: 267-275.
Bañuelos-Vazquez, L.A., Torres Tejerizo, G., and Brom, S. (2017) Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 91: 82-89.
Bellanger, X., Payot, S., Leblond-Bourget, N., and Guédon, G. (2014) Conjugative and mobilizable genomic islands in bacteria: Evolution and diversity. FEMS Microbiol Rev. 38: 720-760.
Biswas, T., Aihara, H., Radman-Livaja, M., Filman, D., Landy, A., and Ellenberger, T. (2005) A structural basis for allosteric control of DNA recombination by λ integrase. Nature 435: 1059-1066.
Blesa, A., Baquedano, I., Quintáns, N.G., Mata, C.P., Castón, J.R., and Berenguer, J. (2017) The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet. 13: 1-22.
Blesa, A., César, C.E., Averhoff, B., and Berenguer, J. (2015) Noncanonical cell-to-cell DNA transfer in Thermus spp. Is insensitive to argonaute-mediated interference. J Bacteriol 197: 138-146.
Burrus, V., and Waldor, M.K. (2003) Control of SXT integration and excision. J Bacteriol 185: 5045-5054.
Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F., and Arechaga, I. (2015) Towards an integrated model of bacterial conjugation. FEMS Microbiol Rev 39: 81-95.
Carraro, N., Poulin, D., and Burrus, V. (2015) Replication and active partition of Integrative and conjugative elements (ICEs) of the SXT/R391 family: the line between ICEs and conjugative plasmids is getting thinner. PLoS Genet 11: e1005298.
Christie, P.J. (2016) Mosaic type IV secretion systems. EcoSal Plus 7: 1-34.
De Grado, M., Castán, P., and Berenguer, J. (1999) A high-transformation-efficiency cloning vector for Thermus thermophilus. Plasmid 42: 241-245.
Doublet, B., Golding, G.R., Mulvey, M.R., and Cloeckaert, A. (2008) Secondary chromosomal attachment site and tandem integration of the mobilizable Salmonella genomic island 1. PLoS One 3: e2060.
Esposito, D., and Scocca, J.J. (1997) The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res. 25: 3605-3614.
Furste, J.P., Pansegrau, W., Ziegelin, G., Kroger, M., and Lanka, E. (1989) Conjungative transfer of promiscuous IncP plasmids: interaction of plasmid-encoded products with the transfer origin. Proc Natl Acad Sci U S A 86: 1771-1775.
Ghinet, M.G., Bordeleau, E., Beaudin, J., Brzezinski, R., Roy, S., and Burrus, V. (2011) Uncovering the prevalence and diversity of integrating conjugative elements in actinobacteria. PLoS One 6: e27846.
Gray, T.A., Krywy, J.A., Harold, J., Palumbo, M.J., and Derbyshire, K.M. (2013) Distributive conjugal transfer in Mycobacteria generatesprogeny with meiotic-like genome-wide mosaicism, allowing mapping of a mating identity locus. PloS Biol. 11: e1001602.
Grohmann, E. (2010) Autonomous plasmid-like replication of Bacillus ICEBs1: A general feature of integrative conjugative elements? MicroCommentary. Mol Microbiol 75: 261-263.
Guglielmini, J., Quintais, L., Garcillán-Barcia, M.P., de la Cruz, F., and Rocha, E.P.C. (2011) The repertoire of ice in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 7: e1002222.
Johnson, C.M., and Grossman, A.D. (2015) Integrative and conjugative elements (ICEs): What they do and how they work. Annu Rev Genet 49: 577-601.
Koraimann, G., and Wagner, M.A. (2014) Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol 4: 1-7.
Lee, C.A., Babic, A., and Grossman, A.D. (2010) Autonomous plasmid-like replication of a conjugative transposon. Mol Microbiol 75: 268-279.
Lewis, J.A., and Hatfull, G.F. (2001) Control of directionality in integrase-mediated recombinatio: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res. 29: 2205-2216.
Marra, D., and Scott, J.R. (1999) Regulation of excision of the conjugative transposon Tn916. Mol Microbiol 31: 609-621.
Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299-304.
Ohtani, N., Tomita, M., and Itaya, M. (2010) An extreme thermophile, Thermus thermophilus, is a polyploid bacterium. J Bacteriol 192: 5499-5505.
Picher, Á.J., Budeus, B., Wafzig, O., Krüger, C., García-Gómez, S., Martínez-Jiménez, M.I., et al. (2016) TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol. Nat Commun 7: 13296.
Sentchilo, V., Czechowska, K., Pradervand, N., Minoia, M., Miyazaki, R., and Van Der Meer, J.R. (2009) Intracellular excision and reintegration dynamics of the ICEclc genomic island of Pseudomonas knackmussii sp. strain B13. Mol Microbiol 72: 1293-1306.
Smillie, C., Garcillan-Barcia, M.P., Francia, M.V., Rocha, E.P.C., and de la Cruz, F. (2010) Mobility of plasmids. Microbiol Mol Biol Rev 74: 434-452.
Song, B., Shoemaker, N.B., Gardner, J.F., and Salyers, A.A. (2007) Integration site selection by the bacteroides conjugative transposon CTnBST. J Bacteriol 189: 6594-6601.
Thoma, L., and Muth, G. (2015) The conjugative DNA-transfer apparatus of Streptomyces. Int J Med Microbiol 305: 224-229.
Verdú, C., Sanchez, E., Ortega, C., Hidalgo, A., Berenguer, J., and Mencía, M. (2019) A modular vector toolkit with a tailored set of thermosensors to regulate gene expression in Thermus thermophilus. ACS Omega 4: 14626-14632.
Wood, M.M., and Gardner, J.F. (2015) The integration and excision of CTnDOT. Mob DNA III 3: 183-198.
Wozniak, R.A.F., and Waldor, M.K. (2010) Integrative and conjugative elements:mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8: 552-563.
Wright, L.D., and Grossman, A.D. (2016) Autonomous replication of the conjugative transposon Tn916. J Bacteriol 198: 3355-3366.
Zhu, Z., Guan, S., Robinson, D., El Fezzazi, H., Quimby, A., and Xu, S.Y. (2014) Characterization of cleavage intermediate and star sites of RM.Tth111II. Sci Rep. 4: 1-11.