A large peptidome dataset improves HLA class I epitope prediction across most of the human population.


Journal

Nature biotechnology
ISSN: 1546-1696
Titre abrégé: Nat Biotechnol
Pays: United States
ID NLM: 9604648

Informations de publication

Date de publication:
02 2020
Historique:
received: 28 05 2019
accepted: 24 10 2019
pubmed: 18 12 2019
medline: 10 4 2020
entrez: 18 12 2019
Statut: ppublish

Résumé

Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.

Identifiants

pubmed: 31844290
doi: 10.1038/s41587-019-0322-9
pii: 10.1038/s41587-019-0322-9
pmc: PMC7008090
mid: NIHMS1541512
doi:

Substances chimiques

Epitopes 0
Histocompatibility Antigens Class I 0
Ligands 0
Peptides 0
Proteome 0
Peptide Hydrolases EC 3.4.-
Proteasome Endopeptidase Complex EC 3.4.25.1

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

199-209

Subventions

Organisme : NCI NIH HHS
ID : P01 CA229092
Pays : United States
Organisme : NCI NIH HHS
ID : P50 CA101942
Pays : United States
Organisme : NHGRI NIH HHS
ID : T32 HG002295
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009172
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA224331
Pays : United States
Organisme : NCI NIH HHS
ID : R21 CA216772
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA155010
Pays : United States
Organisme : NCI NIH HHS
ID : U01 CA214125
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA207021
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL103532
Pays : United States
Organisme : NCI NIH HHS
ID : U24 CA210986
Pays : United States
Organisme : NCI NIH HHS
ID : P01 CA206978
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA248458
Pays : United States

Références

Lefranc, M.-P. et al. IMGT®, the international ImMunoGeneTics information system® 25 years on. Nucleic Acids Res. 43, D413–D422 (2015).
pubmed: 25378316
Robinson, J. et al. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res. 43, D423–D431 (2015).
pubmed: 25414341
Jurtz, V. et al. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J. Immunol. 199, 3360–3368 (2017).
pubmed: 28978689 pmcid: 5679736
Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction. Immunity 46, 315–326 (2017).
pubmed: 28228285 pmcid: 5405381
O’Donnell, T. J. et al. MHCflurry: open-source class I MHC binding affinity prediction. Cell Syst. 7, 129–132.e4 (2018).
pubmed: 29960884
Gfeller, D. et al. The length distribution and multiple specificity of naturally presented HLA-I ligands. J. Immunol. 201, 3705–3716 (2018).
pubmed: 30429286
Bulik-Sullivan, B. et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat. Biotechnol. 37, 55–63 (2018).
Nielsen, M. & Andreatta, M. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med. 8, 33 (2016).
pubmed: 27029192 pmcid: 4812631
Rajasagi, M. et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124, 453–462 (2014).
pubmed: 24891321 pmcid: 4102716
de Kruijf, E. M. et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J. Immunol. 185, 7452–7459 (2010).
pubmed: 21057081
Zhang, R.-L. et al. Predictive value of different proportion of lesion HLA-G expression in colorectal cancer. Oncotarget 8, 107441–107451 (2017).
pubmed: 29296176 pmcid: 5746078
Dawson, D. V., Ozgur, M., Sari, K., Ghanayem, M. & Kostyu, D. D. Ramifications of HLA class I polymorphism and population genetics for vaccine development. Genet. Epidemiol. 20, 87–106 (2001).
pubmed: 11119299
Gragert, L., Madbouly, A., Freeman, J. & Maiers, M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum. Immunol. 74, 1313–1320 (2013).
pubmed: 23806270
Solberg, O. D. et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum. Immunol. 69, 443–464 (2008).
pubmed: 18638659 pmcid: 2632948
Ott, P. A. et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 547, 217–221 (2017).
pubmed: 28678778 pmcid: 5577644
Pearson, H. et al. MHC class I-associated peptides derive from selective regions of the human genome. J. Clin. Invest. 126, 4690–4701 (2016).
pubmed: 27841757 pmcid: 5127664
Vita, R. et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 43, D405–D412 (2015).
pubmed: 25300482
Sette, A. & Sidney, J. HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr. Opin. Immunol. 10, 478–482 (1998).
pubmed: 9722926
Robinson, J., Malik, A., Parham, P., Bodmer, J. G. & Marsh, S. G. E. IMGT/HLA database—a sequence database for the human major histocompatibility complex. Tissue Antigens 55, 280–287 (2000).
pubmed: 10777106
Parham, P. & Moffett, A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat. Rev. Immunol. 13, 133–144 (2013).
pubmed: 23334245 pmcid: 3956658
Nielsen, M. et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE 2, e796 (2007).
pubmed: 17726526 pmcid: 1949492
Rist, M. J. et al. HLA peptide length preferences control CD8
pubmed: 23749632
Maenaka, K. et al. Nonstandard peptide binding revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes. J. Immunol. 165, 3260–3267 (2000).
pubmed: 10975842
Kaur, G. et al. Structural and regulatory diversity shape HLA-C protein expression levels. Nat. Commun. 8, 15924 (2017).
pubmed: 28649982 pmcid: 5490200
Celik, A. A., Simper, G. S., Hiemisch, W., Blasczyk, R. & Bade-Döding, C. HLA-G peptide preferences change in transformed cells: impact on the binding motif. Immunogenetics 70, 485–494 (2018).
pubmed: 29602958 pmcid: 6061458
Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 565, 234–239 (2019).
pubmed: 30568305
Javitt, A. et al. Pro-inflammatory cytokines alter the immunopeptidome landscape by modulation of HLA-B expression. Front. Immunol. 10, 141 (2019).
pubmed: 30833945 pmcid: 6387973
Di Marco, M. et al. Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented peptides and generation of binding prediction matrices. J. Immunol. 199, 2639–2651 (2017).
pubmed: 28904123
Liepe, J. et al. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 354, 354–358 (2016).
pubmed: 27846572
Faridi, P. et al. A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 3, eaar3947 (2018).
pubmed: 30315122
Mylonas, R. et al. Estimating the contribution of proteasomal spliced peptides to the HLA-I ligandome. Mol. Cell. Proteom. 17, 2347–2357 (2018).
Rolfs, Z., Solntsev, S. K., Shortreed, M. R., Frey, B. L. & Smith, L. M. Global identification of post-translationally spliced peptides with neo-fusion. J. Proteome Res. 18, 349–358 (2018).
pubmed: 30346791 pmcid: 6465104
Rolfs, Z., Müller, M., Shortreed, M. R., Smith, L. M. & Bassani-Sternberg, M. Comment on ‘A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands’. Sci. Immunol. 4, eaaw1622 (2019).
pubmed: 31420320
Bassani-Sternberg, M. et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).
pubmed: 27869121 pmcid: 5121339
Schuster, H. et al. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl Acad. Sci. USA 114, E9942–E9951 (2017).
pubmed: 29093164
Girdlestone, J. Regulation of HLA class I loci by interferons. Immunobiology 193, 229–237 (1995).
pubmed: 8530148
Chong, C. et al. High-throughput and sensitive immunopeptidomics platform reveals profound interferonγ-mediated remodeling of the human leukocyte antigen (HLA) ligandome. Mol. Cell. Proteom. 17, 533–548 (2018).
Kidera, A., Konishi, Y., Oka, M., Ooi, T. & Scheraga, H. A. Statistical analysis of the physical properties of the 20 naturally occurring amino acids. J. Protein Chem. 4, 23–55 (1985).
Bremel, R. D. & Homan, E. J. An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches. Immunome Res. 6, 7 (2010).
pubmed: 21044289 pmcid: 2990731
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv:1802.03426 [stat.ML] (2018).
Harndahl, M. et al. Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays. J. Biomol. Screen. 14, 173–180 (2009).
pubmed: 19196700
Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell. Proteom. 14, 658–673 (2015).
Hunt, D. F. et al. Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255, 1261–1263 (1992).
pubmed: 1546328
Rammensee, H. G., Friede, T. & Stevanoviíc, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).
pubmed: 7890324
Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. & Stevanović, S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999).
pubmed: 10602881
Kim, Y., Sidney, J., Pinilla, C., Sette, A. & Peters, B. Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior. BMC Bioinformatics 10, 394 (2009).
pubmed: 19948066 pmcid: 2790471

Auteurs

Siranush Sarkizova (S)

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Susan Klaeger (S)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Phuong M Le (PM)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Letitia W Li (LW)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Giacomo Oliveira (G)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

Hasmik Keshishian (H)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Christina R Hartigan (CR)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Wandi Zhang (W)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.

David A Braun (DA)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Keith L Ligon (KL)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Harvard Medical School, Boston, MA, USA.
Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA.
Division of Neuropathology, Brigham and Women's Hospital, Boston, MA, USA.

Pavan Bachireddy (P)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Ioannis K Zervantonakis (IK)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Jennifer M Rosenbluth (JM)

Department of Cell Biology, Harvard Medical School, Boston, MA, USA.

Tamara Ouspenskaia (T)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Travis Law (T)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Sune Justesen (S)

Immunitrack, Copenhagen, Denmark.

Jonathan Stevens (J)

Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.

William J Lane (WJ)

Harvard Medical School, Boston, MA, USA.
Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.

Thomas Eisenhaure (T)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Guang Lan Zhang (G)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA.

Karl R Clauser (KR)

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Nir Hacohen (N)

Broad Institute of MIT and Harvard, Cambridge, MA, USA. nhacohen@mgh.harvard.edu.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. nhacohen@mgh.harvard.edu.
Center for Cancer Immunology, Massachusetts General Hospital, Boston, MA, USA. nhacohen@mgh.harvard.edu.

Steven A Carr (SA)

Broad Institute of MIT and Harvard, Cambridge, MA, USA. scarr@broadinstitute.org.

Catherine J Wu (CJ)

Broad Institute of MIT and Harvard, Cambridge, MA, USA. cwu@partners.org.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. cwu@partners.org.
Harvard Medical School, Boston, MA, USA. cwu@partners.org.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. cwu@partners.org.

Derin B Keskin (DB)

Broad Institute of MIT and Harvard, Cambridge, MA, USA. derin_keskin@dfci.harvard.edu.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. derin_keskin@dfci.harvard.edu.
Harvard Medical School, Boston, MA, USA. derin_keskin@dfci.harvard.edu.
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. derin_keskin@dfci.harvard.edu.
Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA. derin_keskin@dfci.harvard.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH