Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer.


Journal

Clinical and experimental medicine
ISSN: 1591-9528
Titre abrégé: Clin Exp Med
Pays: Italy
ID NLM: 100973405

Informations de publication

Date de publication:
Feb 2020
Historique:
received: 19 11 2019
accepted: 11 12 2019
pubmed: 20 12 2019
medline: 2 10 2020
entrez: 20 12 2019
Statut: ppublish

Résumé

One of the most common mechanisms of immune evasion in MSI colorectal cancers (CRCs) is loss of HLA class I expression due to mutations in B2M gene which can become a negative predictor for checkpoint blockade therapy. The aim of this study was the determination of prevalence of B2M somatic mutations in MSI CRC patients and relationship between B2M mutations and lymphocytes infiltration and other clinicopathological features as well as detection of methylation changes in B2M promoter region which can be another mechanism of immune escape. In our study, 37 MSI-H and 5 MSI-L patients were selected for screening of B2M mutational and methylation status. The characterization of patients was based on standard histopathological diagnosis and TNM classification; BRAF, KRAS mutations, tumor-infiltrating lymphocytes and peritumoral lymphoid reaction were also determined. MSI analysis was performed using fragment analysis. B2M mutations were identified by Sanger sequencing, and methylation of CpG islands in promoter region was detected by methylation-specific PCR. Heterozygous mutations in the B2M gene were detected in five MSI-H patients (13.5%), while the mutation c.45_48delTTCT was determined in four patients and mutation c.276delC was found in two patients. One of these five patients was compound heterozygote harboring both mutations. Methylation of the promoter region of the B2M gene was observed in one patient with MSI-H colorectal cancer. Detection of genetic and epigenetic changes in B2M gene could be important in personalized therapy for CRC patients as these changes may be one of the mechanisms of secondary resistance of MSI positive tumors to immunotherapy.

Identifiants

pubmed: 31853669
doi: 10.1007/s10238-019-00601-7
pii: 10.1007/s10238-019-00601-7
doi:

Substances chimiques

B2M protein, human 0
beta 2-Microglobulin 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

87-95

Subventions

Organisme : Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
ID : APVV-16-0066

Références

Buckowitz A, Knaebel HP, Benner A, et al. Microsatellite instability in colorectal cancer is associated with local lymphocyte infiltration and low frequency of distant metastases. Br J Cancer. 2005;92:1746–53.
pubmed: 15856045 pmcid: 2362037 doi: 10.1038/sj.bjc.6602534
Kloor M, Von Knebel Doeberitz M. The immune biology of microsatellite-unstable cancer. Trends Cancer. 2016;2:121–33.
pubmed: 28741532 doi: 10.1016/j.trecan.2016.02.004
Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–87.
pubmed: 20420947 doi: 10.1053/j.gastro.2009.12.064
Jung SB, Lee HI, Oh HK, Shin IH, Jeon CH. Clinico-pathologic parameters for prediction of microsatellite instability in colorectal cancer. Cancer Res Treat. 2012;44:179–86.
pubmed: 23091444 pmcid: 3467421 doi: 10.4143/crt.2012.44.3.179
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.
pubmed: 22437870 pmcid: 4856023 doi: 10.1038/nrc3239
McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immuno reactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.
pubmed: 26940869 pmcid: 4984254 doi: 10.1126/science.aaf1490
Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.
pubmed: 29070816 pmcid: 5656607 doi: 10.1038/s41467-017-01062-w
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.
pubmed: 28596308 pmcid: 5576142 doi: 10.1126/science.aan6733
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.
pubmed: 22658127 pmcid: 3544539 doi: 10.1056/NEJMoa1200690
Kloor M, Michel S, von Knebel Doeberitz M. Immune evasion of microsatellite unstable colorectal cancers. Int J Cancer. 2010;127:1001–10.
pubmed: 20198617 doi: 10.1002/ijc.25283
Bicknell DC, Kaklamanis L, Hampson R, Bodmer WF, Karran P. Selection for beta 2-microglobulin mutation in mismatch repair defective colorectal carcinomas. Curr Biol. 1996;6:1695–7.
pubmed: 8994836 doi: 10.1016/S0960-9822(02)70795-1
Yamamoto H, Yamashita K, Perucho M. Somatic mutation of the beta2-microglobulin gene associates with unfavorable prognosis in gastrointestinal cancer of the microsatellite mutator phenotype. Gastroenterology. 2001;120:1565–7.
pubmed: 11339240 doi: 10.1053/gast.2001.24497
Kloor M, Michel S, Buckowitz B, et al. Beta2-microglobulin mutations in microsatellite unstable colorectal tumors. Int J Cancer. 2007;121:454–8.
pubmed: 17373663 doi: 10.1002/ijc.22691
Tikidzhieva A, Benner A, Michel S, et al. Microsatellite instability and Beta2-Microglobulin mutations as prognostic markers in colon cancer: results of the FOGT-4 trial. Br J Cancer. 2012;106:1239–45.
pubmed: 22353804 pmcid: 3304421 doi: 10.1038/bjc.2012.53
Clendenning M, Huang A, Jayasekara H, Investigators from the Melbourne Collaborative Cohort Study and the Australasian Colorectal Cancer Family Registry Cohort, et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam Cancer. 2018;17:91–100.
pubmed: 28616688 pmcid: 6129400 doi: 10.1007/s10689-017-0013-y
Grasso CS, Giannakis M, Wells DK, et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 2018;8:730–49.
pubmed: 29510987 pmcid: 5984687 doi: 10.1158/2159-8290.CD-17-1327
Yeon Yeon S, Jung SH, Jo YS, et al. Immune checkpoint blockade resistance-related B2M hotspot mutations in microsatellite-unstable colorectal carcinoma. Pathol Res Pract. 2019;215:209–14.
pubmed: 30503610 doi: 10.1016/j.prp.2018.11.014
Chang CC, Campoli M, Restifo NP, Wang X, Ferrone S. Immune selection of hot-spot beta 2-microglobulin gene mutations, HLA-A2 allospecificity loss, and antigen-processing machinery component down-regulation in melanoma cells derived from recurrent metastases following immunotherapy. J Immunol. 2005;174:1462–71.
pubmed: 15661905 doi: 10.4049/jimmunol.174.3.1462
Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother. 2007;56:227–36.
pubmed: 16783578 doi: 10.1007/s00262-006-0183-1
Gettinger S, Choi J, Hastings K, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.
pubmed: 29025772 pmcid: 5718941 doi: 10.1158/2159-8290.CD-17-0593
Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.
pubmed: 27433843 pmcid: 5007206 doi: 10.1056/NEJMoa1604958
Kašubová I, Kalman M, Jašek K, et al. Stratification of patients with colorectal cancer without the recorded family history. Oncol Lett. 2019;17:3649–56.
pubmed: 30881489 pmcid: 6403522
Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 7th ed. New York: Wiley; 2009.
Jenkins MA, Hayashi S, O’Shea AM, Colon Cancer Family Registry, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population—based study. Gastroenterology. 2007;133:48–56.
pubmed: 17631130 doi: 10.1053/j.gastro.2007.04.044
Hyde A, Fontaine D, Stuckless S, et al. A histology-based model for predicting microsatellite instability in colorectal cancers. Am J Surg Pathol. 2010;34:1820–9.
pubmed: 21107088 doi: 10.1097/PAS.0b013e3181f6a912
Lasabová Z, Kalman M, Holubeková V, et al. Mutation analysis of POLE gene in patients with early onset colorectal cancer revealed a rare silent variant within the endonuclease domain with potential effect on splicing. Clin Exp Med. 2019;19:393–400.
pubmed: 31049795 doi: 10.1007/s10238-019-00558-7
Jasek K, Buzalkova V, Minarik G, et al. Detection of mutations in the BRAF gene in patients with KIT and PDGFRA wild-type gastrointestinal stromal tumors. Virchows Arch. 2017;470:29–36.
pubmed: 27864688 doi: 10.1007/s00428-016-2044-4
Harlé A, Busser B, Rouyer M, et al. Comparison of COBAS 4800, TaqMan PCR and high resolution melting PCR assays for the detection of KRAS somatic mutations in formalin-fixed paraffin embedded colorectal carcinomas. Virchows Arch. 2013;462:329–35.
pubmed: 23400679 doi: 10.1007/s00428-013-1380-x
Vanova B, Kalman M, Jasek K, et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med. 2019;19:219–24.
pubmed: 30661213 doi: 10.1007/s10238-019-00545-y
Lasabova Z, Tilandyova P, Kajo K, et al. Hypermethylation of the GSTP1 promoter region in breast cancer is associated with prognostic clinicopathological parameters. Neoplasma. 2010;57:35–40.
pubmed: 19895170 doi: 10.4149/neo_2010_01_035
Ding S, Gong BD, Yu J, et al. Methylation profile of the promoter CpG islands of 14 “drug-resistance” genes in hepatocellular carcinoma. World J Gastroenterol. 2004;10:3433–40.
pubmed: 15526362 pmcid: 4576224 doi: 10.3748/wjg.v10.i23.3433
R Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. www.R-project.org/ .
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.
pubmed: 21436444 doi: 10.1126/science.1203486
Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2014;21:687–92.
pubmed: 25501578 pmcid: 4334715 doi: 10.1158/1078-0432.CCR-14-1860
Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85.
pubmed: 18836468 pmcid: 2729106 doi: 10.1038/onc.2008.273
Kim TM, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155:858–68.
pubmed: 24209623 doi: 10.1016/j.cell.2013.10.015
Koelzer VH, Baker K, Kassahn D, Baumhoer D, Zlobec I. Prognostic impact of beta-2-microglobulin expression in colorectal cancers stratified by mismatch repair status. J Clin Pathol. 2012;65:996–1002.
pubmed: 22859396 doi: 10.1136/jclinpath-2012-200742
Janikovits J, Müller M, Krzykalla J, et al. High numbers of PDCD1 (PD-1)-positive T cells and B2M mutations in microsatellite-unstable colorectal cancer. Oncoimmunology. 2018;7:e1390640.
pubmed: 29308317 doi: 10.1080/2162402X.2017.1390640
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4.
pubmed: 17008531 doi: 10.1126/science.1129139
Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018;391:2128–39.
pubmed: 29754777 doi: 10.1016/S0140-6736(18)30789-X
Bicknell DC, Rowan A, Bodmer WF. Beta2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proc Natl Acad Sci USA. 1994;91:4751–5.
pubmed: 8197130 doi: 10.1073/pnas.91.11.4751 pmcid: 43866
Cabrera CM, Jimenez P, Cabrera T, Esparza C, Ruiz-Cabello F, Garrido F. Total loss of MHC class I in colorectal tumors can be explained by two molecular pathways: beta2-microglobulin inactivation in MSI-positive tumors and LMP7/TAP2 downregulation in MSI-negative tumors. Tissue Antigens. 2003;61:211–9.
pubmed: 12694570 doi: 10.1034/j.1399-0039.2003.00020.x
Hill DM, Kasliwal T, Schwarz E, et al. A dominant negative mutant beta 2-microglobulin blocks the extracellular folding of a major histocompatibility complex class I heavy chain. J Biol Chem. 2003;278:5630–8.
pubmed: 12454016 doi: 10.1074/jbc.M208381200
Sucker A, Zhao F, Real B, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20:6593–604.
pubmed: 25294904 doi: 10.1158/1078-0432.CCR-14-0567 pmcid: 8728890
Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10:687–92.
pubmed: 11257100 doi: 10.1093/hmg/10.7.687
Santini V, Kantarjian HM, Issa JP. Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001;134:573–86.
pubmed: 11281740 doi: 10.7326/0003-4819-134-7-200104030-00011
Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.
pubmed: 9338076 doi: 10.1016/S0065-230X(08)60702-2
Qifeng S, Bo C, Xingtao J, Chuanliang P, Xiaogang Z. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg. 2011;141:808–14.
pubmed: 21335133 doi: 10.1016/j.jtcvs.2010.04.031
van den Elsen PJ, Holling TM, Kuipers HF, van der Stoep N. Transcriptional regulation of antigen presentation. Curr Opin Immunol. 2004;16:67–75.
pubmed: 14734112 doi: 10.1016/j.coi.2003.11.015
Serrano A, Tanzarella S, Lionello I, et al. Expression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer. 2001;94:243–51.
pubmed: 11668505 doi: 10.1002/ijc.1452
Nie Y, Yang G, Song Y, et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class-I genes in human esophageal squamous cell carcinomas. Carcinogenesis. 2001;22:1615–23.
pubmed: 11577000 doi: 10.1093/carcin/22.10.1615
Ye Q, Shen Y, Wang X, et al. Hypermethylation of HLA class I gene is associated with HLA class I down-regulation in human gastric cancer. Tissue Antigens. 2010;75:30–9.
pubmed: 19883394 doi: 10.1111/j.1399-0039.2009.01390.x
Yoshihama S, Roszik J, Downs I, et al. NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci USA. 2016;113:5999–6004.
pubmed: 27162338 doi: 10.1073/pnas.1602069113 pmcid: 4889388
Gyorffy B, Nagy A, Pongor L. Effect of DNA hypermethylation on immune escape through downregulation of antigen presentation genes in breast cancer. J Clin Oncol. 2016;34(15 suppl):11547.
doi: 10.1200/JCO.2016.34.15_suppl.11547

Auteurs

Zuzana Snahnicanova (Z)

Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.

Ivana Kasubova (I)

Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.

Michal Kalman (M)

Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia.

Marian Grendar (M)

Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.

Peter Mikolajcik (P)

Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.

Eva Gabonova (E)

Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.

Ludovit Laca (L)

Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.

Martin Caprnda (M)

1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia.

Luis Rodrigo (L)

Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain.

Rachele Ciccocioppo (R)

Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria, Integrata Policlinico GB Rossi, University of Verona, Verona, Italy.

Peter Kruzliak (P)

Department of Internal Medicine, Brothers of Mercy Hospital, Polní 553/3, 63900, Brno, Czech Republic. kruzliakpeter@gmail.com.
2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic. kruzliakpeter@gmail.com.

Lukas Plank (L)

Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia.

Zora Lasabova (Z)

Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia. zora.lasabova@uniba.sk.
Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia. zora.lasabova@uniba.sk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH