Poor maternal nutrition during gestation in sheep alters prenatal muscle growth and development in offspring.
Animal Nutritional Physiological Phenomena
/ genetics
Animals
Diet
/ veterinary
Down-Regulation
/ genetics
Female
Fetal Development
/ genetics
Gene Expression Regulation, Developmental
Humans
Immunohistochemistry
/ veterinary
Male
Maternal Nutritional Physiological Phenomena
/ genetics
Muscle Development
/ genetics
Muscle, Skeletal
/ embryology
Pregnancy
Sequence Analysis, RNA
/ veterinary
Sheep
/ embryology
Time Factors
Up-Regulation
/ genetics
Vitamins
/ administration & dosage
fetal programming
muscle
myogenesis
nutrition
sheep
Journal
Journal of animal science
ISSN: 1525-3163
Titre abrégé: J Anim Sci
Pays: United States
ID NLM: 8003002
Informations de publication
Date de publication:
01 Jan 2020
01 Jan 2020
Historique:
received:
11
10
2019
accepted:
23
12
2019
pubmed:
26
12
2019
medline:
2
5
2020
entrez:
26
12
2019
Statut:
ppublish
Résumé
Poor maternal nutrition during gestation can have immediate and life-long negative effects on offspring growth and health. In livestock, this leads to reduced product quality and increased costs of production. Based on previous evidence that both restricted- and overfeeding during gestation decrease offspring muscle growth and alter metabolism postnatally, we hypothesized that poor maternal nutrition during gestation would reduce the growth and development of offspring muscle prenatally, reduce the number of myogenic progenitor cells, and result in changes in the global expression of genes involved in prenatal muscle development and function. Ewes were fed a control (100% NRC)-, restricted (60% NRC)-, or overfed (140% NRC) diet beginning on day 30 of gestation until days 45, 90, and 135 of gestation or until parturition. At each time point fetuses and offspring (referred to as CON, RES, and OVER) were euthanized and longissimus dorsi (LM), semitendinosus (STN), and triceps brachii (TB) were collected at each time point for histological and RNA-Seq analysis. In fetuses and offspring, we did not observe an effect of diet on cross-sectional area (CSA), but CSA increased over time (P < 0.05). At day 90, RES and OVER had reduced secondary:primary muscle fiber ratios in LM (P < 0.05), but not in STN and TB. However, in STN and TB percent PAX7-positive cells were decreased compared with CON (P < 0.05). Maternal diet altered LM mRNA expression of 20 genes (7 genes downregulated in OVER and 2 downregulated in RES compared with CON; 5 downregulated in OVER compared with RES; false discovery rate (FDR)-adj. P < 0.05). A diet by time interaction was not observed for any genes in the RNA-Seq analysis; however, 2,205 genes were differentially expressed over time between days 90 and 135 and birth (FDR-adj. P < 0.05). Specifically, consistent with increased protein accretion, changes in muscle function, and increased metabolic activity during myogenesis, changes in genes involved in cell cycle, metabolic processes, and protein synthesis were observed during fetal myogenesis. In conclusion, poor maternal nutrition during gestation contributes to altered offspring muscle growth during early fetal development which persists throughout the fetal stage. Based on muscle-type-specific effects of maternal diet, it is important to evaluate more than one type of muscle to fully elucidate the effects of maternal diet on offspring muscle development.
Identifiants
pubmed: 31875422
pii: 5686853
doi: 10.1093/jas/skz388
pmc: PMC6981092
pii:
doi:
Substances chimiques
Vitamins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2019. Published by Oxford University Press on behalf of the American Society of Animal Science. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Theriogenology. 2016 Mar 15;85(5):939-945.e1
pubmed: 26706599
J Physiol. 2006 Aug 15;575(Pt 1):241-50
pubmed: 16763001
Neuron. 2018 Feb 7;97(3):571-585.e5
pubmed: 29395910
Biol Reprod. 2004 Dec;71(6):1968-73
pubmed: 15317692
Cold Spring Harb Perspect Biol. 2012 Feb 01;4(2):null
pubmed: 22300977
Crit Rev Food Sci Nutr. 1990;29(3):167-96
pubmed: 2222798
J Anim Sci. 2013 Oct;91(10):4797-806
pubmed: 23942703
Mol Cell Biol. 2015 Oct;35(20):3547-65
pubmed: 26240284
Bioinformatics. 2015 Jan 15;31(2):166-9
pubmed: 25260700
Physiol Rev. 2013 Jan;93(1):23-67
pubmed: 23303905
Nat Protoc. 2009;4(8):1184-91
pubmed: 19617889
J Physiol. 2008 May 15;586(10):2651-64
pubmed: 18372306
J Anim Sci. 2016 Feb;94(2):789-99
pubmed: 27065149
J Clin Invest. 2011 Dec;121(12):4796-809
pubmed: 22105175
J Anim Sci. 2016 Jul;94(7):3093-9
pubmed: 27482696
Neurobiol Dis. 2010 May;38(2):210-8
pubmed: 20085810
J Pregnancy. 2012;2012:631038
pubmed: 22900186
J Anim Sci Biotechnol. 2014 Oct 23;5(1):48
pubmed: 25810901
PLoS One. 2015 Apr 15;10(4):e0122152
pubmed: 25875659
J Anim Sci. 2006 Sep;84(9):2316-37
pubmed: 16908634
Cells Tissues Organs. 2001;169(1):21-33
pubmed: 11340258
Br Med Bull. 2001;60:5-20
pubmed: 11809615
Mol Endocrinol. 2009 Jun;23(6):925-31
pubmed: 19324969
Genome Biol. 2014;15(12):550
pubmed: 25516281
J Anim Sci. 2010 Apr;88(13 Suppl):E51-60
pubmed: 19717774
Am J Perinatol. 2009 Mar;26(3):191-8
pubmed: 19031354
Cell. 2000 Sep 15;102(6):777-86
pubmed: 11030621
Mol Cell Biochem. 1998 Nov;188(1-2):49-56
pubmed: 9823010
Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4794-806
pubmed: 19515997
Domest Anim Endocrinol. 2004 Oct;27(3):267-85
pubmed: 15451074
Nature. 2005 Jun 16;435(7044):954-8
pubmed: 15843802
Reproduction. 2004 Oct;128(4):443-54
pubmed: 15454639
J Physiol. 2004 Dec 1;561(Pt 2):355-77
pubmed: 15459241
Reprod Fertil Dev. 2011;24(1):105-11
pubmed: 22394722
Int J Obes (Lond). 2013 Apr;37(4):568-75
pubmed: 22614057
J Muscle Res Cell Motil. 1989 Jun;10(3):197-205
pubmed: 2547831
J Cell Sci. 2006 May 1;119(Pt 9):1824-32
pubmed: 16608873
J Endocrinol. 2010 Oct;207(1):77-86
pubmed: 20675304
Meat Sci. 2010 Sep;86(1):103-9
pubmed: 20510530
Curr Opin Clin Nutr Metab Care. 2015 Jul;18(4):407-14
pubmed: 26049639
Am J Physiol Endocrinol Metab. 2010 Dec;299(6):E968-75
pubmed: 20876759
J Anim Sci Biotechnol. 2014 Sep 05;5(1):43
pubmed: 25247074
BMC Bioinformatics. 2009 Jan 08;10:11
pubmed: 19133141
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Anim Reprod Sci. 2005 Jul;87(3-4):241-51
pubmed: 15911174
Animal. 2016 Jul;10(7):1200-3
pubmed: 26856892
J Anim Sci. 2011 Feb;89(2):583-90
pubmed: 20852073
Front Physiol. 2019 May 01;10:515
pubmed: 31118900
Paediatr Perinat Epidemiol. 2012 Jul;26 Suppl 1:4-26
pubmed: 22742599
Am J Physiol Endocrinol Metab. 2009 Apr;296(4):E917-24
pubmed: 19176350
Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6
pubmed: 21256828
Dev Biol. 1994 Aug;164(2):588-603
pubmed: 7913900
J Cell Biol. 2006 Jan 2;172(1):91-102
pubmed: 16380438
J Anim Sci. 2017 May;95(5):2222-2232
pubmed: 28727021
Pediatr Nephrol. 2010 Apr;25(4):669-77
pubmed: 20033220
Mol Med Today. 1995 Dec;1(9):418-23
pubmed: 9415190
Meat Sci. 2015 Nov;109:40-7
pubmed: 25953215