Somatosensory Evoked Potentials and Neuroprognostication After Cardiac Arrest.


Journal

Neurocritical care
ISSN: 1556-0961
Titre abrégé: Neurocrit Care
Pays: United States
ID NLM: 101156086

Informations de publication

Date de publication:
06 2020
Historique:
pubmed: 8 1 2020
medline: 8 6 2021
entrez: 8 1 2020
Statut: ppublish

Résumé

Improved understanding of post-cardiac arrest syndrome and clinical practices such as targeted temperature management have led to improved mortality in this cohort. Attention has now been placed on development of tools to aid in predicting functional outcome in comatose cardiac arrest survivors. Current practice uses a multimodal approach including physical examination, neuroimaging, and electrophysiologic data, with a primary utility in predicting poor functional outcome. These modalities remain confounded by self-fulfilling prophecy and the withdrawal of life-sustaining therapies. To date, a reliable measure to predict good functional outcome has not been established or validated, but the use of quantitative somatosensory evoked potential (SSEP) shows potential for this use. MEDLINE and EMBASE search using words "Cardiac Arrest" and "SSEP," "Somato sensory evoked potentials," "qSSEP," "quantitative SSEP," "targeted temperature management in cardiac arrest" was conducted. Relevant recent studies on targeted temperature management in cardiac arrest, plus studies on SSEP in cardiac arrest in the setting of hypothermia and without hypothermia, were included. In addition, animal studies evaluating the role of different components of SSEP in cardiac arrest were reviewed. SSEP is a specific indicator of poor outcomes in post-cardiac arrest patients but lacks sensitivity and has not clinically been established to foresee good outcomes. Novel methods of analyzing quantitative SSEP (qSSEP) signals have shown potential to predict good outcomes in animal and human studies. In addition, qSSEP has potential to track cerebral recovery and guide treatment strategy in post-cardiac arrest patients. Lying beyond the current clinical practice of dichotomized absent/present N20 peaks, qSSEP has the potential to emerge as one of the earliest predictors of good outcome in comatose post-cardiac arrest patients. Validation of qSSEP markers in prospective studies to predict good and poor outcomes in the cardiac arrest population in the setting of hypothermia could advance care in cardiac arrest. It has the prospect to guide allocation of health care resources and reduce self-fulfilling prophecy.

Identifiants

pubmed: 31907802
doi: 10.1007/s12028-019-00903-4
pii: 10.1007/s12028-019-00903-4
pmc: PMC7275887
mid: NIHMS1548323
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

847-857

Subventions

Organisme : NHLBI NIH HHS
ID : R01 HL118084
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS110387
Pays : United States

Références

Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–e360.
pubmed: 26673558
Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation. 2010;81(11):1479–87.
pubmed: 20828914 doi: 10.1016/j.resuscitation.2010.08.006
Mateen FJ, Josephs KA, Trenerry MR, Felmlee-Devine MD, Weaver AL, Carone M, White RD. Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study. Neurology. 2011;77(15):1438–45.
pubmed: 21917772 doi: 10.1212/WNL.0b013e318232ab33
Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics - 2017 update: a report from the American Heart Association. Circulation. 2017;135:146–603.
doi: 10.1161/CIR.0000000000000485
Mulder M, Gibbs HG, Smith SW, Dhaliwal R, Scott NL, Sprenkle MD, Geocadin RG. Awakening and withdrawal of life-sustaining treatment in cardiac arrest survivors treated with therapeutic hypothermia*. Crit Care Med. 2014;42(12):2493–9.
pubmed: 25121961 pmcid: 4428607 doi: 10.1097/CCM.0000000000000540
Paul M, Bougouin W, Geri G, Dumas F, Champigneulle B, Legriel S, Charpentier J, Mira JP, Sandroni C, Cariou A. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med. 2016;42(7):1128–36.
pubmed: 27098348 doi: 10.1007/s00134-016-4349-9
Elmer J, Torres C, Aufderheide TP, Austin MA, Callaway CW, Golan E, Herren H, Jasti J, Kudenchuk PJ, Scales DC, et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation. 2016;102:127–35.
pubmed: 26836944 pmcid: 4834233 doi: 10.1016/j.resuscitation.2016.01.016
Geocadin RG, Buitrago MM, Torbey MT, Chandra-Strobos N, Williams MA, Kaplan PW. Neurologic prognosis and withdrawal of life support after resuscitation from cardiac arrest. Neurology. 2006;67(1):105–8.
pubmed: 16832087 doi: 10.1212/01.wnl.0000223335.86166.b4
Dragancea I, Horn J, Kuiper M, Friberg H, Ullen S, Wetterslev J, Cranshaw J, Hassager C, Nielsen N, Cronberg T, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 degrees C versus 36 degrees C: results from a randomised controlled clinical trial. Resuscitation. 2015;93:164–70.
pubmed: 25921544 doi: 10.1016/j.resuscitation.2015.04.013
Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–56.
doi: 10.1056/NEJMoa012689
Grossestreuer AV, Abella BS, Leary M, Perman SM, Fuchs BD, Kolansky DM, Beylin ME, Gaieski DF. Time to awakening and neurologic outcome in therapeutic hypothermia-treated cardiac arrest patients. Resuscitation. 2013;84(12):1741–6.
pubmed: 23916554 doi: 10.1016/j.resuscitation.2013.07.009
Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, Leary M, Meurer WJ, Peberdy MA, Thompson TM, et al. Part 8: Post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–482.
pubmed: 26472996 pmcid: 4959439 doi: 10.1161/CIR.0000000000000262
Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15(6):597–609.
doi: 10.1016/S1474-4422(16)00015-6 pubmed: 27017468
Geocadin RG, Peberdy MA, Lazar RM. Poor survival after cardiac arrest resuscitation: a self-fulfilling prophecy or biologic destiny?*. Crit Care Med. 2012;40(3):979–80.
pubmed: 22343840 doi: 10.1097/CCM.0b013e3182410146
Nolan JP, Ferrando P, Soar J, Benger J, Thomas M, Harrison DA, Perkins GD. Increasing survival after admission to UK critical care units following cardiopulmonary resuscitation. Crit Care. 2016;20(1):219.
pubmed: 27393012 pmcid: 4938902 doi: 10.1186/s13054-016-1390-6
Reinikainen M, Oksanen T, Leppanen P, Torppa T, Niskanen M, Kurola J. Mortality in out-of-hospital cardiac arrest patients has decreased in the era of therapeutic hypothermia. Acta Anaesthesiol Scand. 2012;56(1):110–5.
pubmed: 22091826 doi: 10.1111/j.1399-6576.2011.02543.x
Merchant RM, Becker LB, Abella BS, Asch DA, Groeneveld PW. Cost-effectiveness of therapeutic hypothermia after cardiac arrest. Circ Cardiovasc Qual Outcomes. 2009;2(5):421–8.
pubmed: 20031872 doi: 10.1161/CIRCOUTCOMES.108.839605
Chan PS, Nallamothu BK, Krumholz HM, Curtis LH, Li Y, Hammill BG, Spertus JA. Readmission rates and long-term hospital costs among survivors of an in-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2014;7(6):889–95.
pubmed: 25351479 pmcid: 4241155 doi: 10.1161/CIRCOUTCOMES.114.000925
Karapetkova M, Koenig MA, Jia X. Early prognostication markers in cardiac arrest patients treated with hypothermia. Eur J Neurol. 2016;23(3):476–88.
pubmed: 26228521 doi: 10.1111/ene.12803
Deng R, Xiong W, Jia X. Electrophysiological monitoring of brain injury and recovery after cardiac arrest. Int J Mol Sci. 2015;16(11):25999–6018.
pubmed: 26528970 pmcid: 4661797 doi: 10.3390/ijms161125938
Samaniego EA, Mlynash M, Caulfield AF, Eyngorn I, Wijman CA. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care. 2011;15(1):113–9.
pubmed: 20680517 pmcid: 3153345 doi: 10.1007/s12028-010-9412-8
Kamps MJ, Horn J, Oddo M, Fugate JE, Storm C, Cronberg T, Wijman CA, Wu O, Binnekade JM, Hoedemaekers CW. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med. 2013;39(10):1671–82.
pubmed: 23801384 doi: 10.1007/s00134-013-3004-y
Amorim E, Rittenberger JC, Zheng JJ, Westover MB, Baldwin ME, Callaway CW, Popescu A. Continuous EEG monitoring enhances multimodal outcome prediction in hypoxic-ischemic brain injury. Resuscitation. 2016;109:121–6.
pubmed: 27554945 pmcid: 5124407 doi: 10.1016/j.resuscitation.2016.08.012
Bouwes A, Binnekade JM, Kuiper MA, Bosch FH, Zandstra DF, Toornvliet AC, Biemond HS, Kors BM, Koelman JH, Verbeek MM, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol. 2012;71(2):206–12.
pubmed: 22367993 doi: 10.1002/ana.22632
Leithner C, Ploner CJ, Hasper D, Storm C. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest? Neurology. 2010;74(12):965–9.
pubmed: 20308680 doi: 10.1212/WNL.0b013e3181d5a631
Rossetti AO, Oddo M, Logroscino G, Kaplan PW. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol. 2010;67(3):301–7.
pubmed: 20373341
Al Thenayan E, Savard M, Sharpe M, Norton L, Young B. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology. 2008;71(19):1535–7.
pubmed: 18981375 doi: 10.1212/01.wnl.0000334205.81148.31
Hirsch KG, Mlynash M, Eyngorn I, Pirsaheli R, Okada A, Komshian S, Chen C, Mayer SA, Meschia JF, Bernstein RA, et al. Multi-center study of diffusion-weighted imaging in coma after cardiac arrest. Neurocrit Care. 2016;24(1):82–9.
pubmed: 26156112 pmcid: 26156112 doi: 10.1007/s12028-015-0179-9
Stammet P. Blood biomarkers of hypoxic-ischemic brain injury after cardiac arrest. Semin Neurol. 2017;37(1):75–80.
pubmed: 28147421 doi: 10.1055/s-0036-1593858
Cronberg T, Rundgren M, Westhall E, Englund E, Siemund R, Rosen I, Widner H, Friberg H. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;77(7):623–30.
pubmed: 21775743 doi: 10.1212/WNL.0b013e31822a276d
Fugate JE, Wijdicks EF, Mandrekar J, Claassen DO, Manno EM, White RD, Bell MR, Rabinstein AA. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol. 2010;68(6):907–14.
pubmed: 21061401 doi: 10.1002/ana.22133
Stammet P, Collignon O, Hassager C, Wise MP, Hovdenes J, Aneman A, Horn J, Devaux Y, Erlinge D, Kjaergaard J, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 degrees C and 36 degrees C. J Am Coll Cardiol. 2015;65(19):2104–14.
pubmed: 25975474 doi: 10.1016/j.jacc.2015.03.538
Maciel CB, Morawo AO, Tsao CY, Youn TS, Labar DR, Rubens EO, Greer DM. SSEP in Therapeutic hypothermia era. J Clin Neurophysiol. 2017;34(5):469–75.
pubmed: 28557905 doi: 10.1097/WNP.0000000000000392
Sandroni C, Cavallaro F, Callaway CW, D'Arrigo S, Sanna T, Kuiper MA, Biancone M, Della Marca G, Farcomeni A, Nolan JP. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: Patients treated with therapeutic hypothermia. Resuscitation. 2013;84(10):1324–38.
pubmed: 23831242 doi: 10.1016/j.resuscitation.2013.06.020
Backman S, Westhall E, Dragancea I, Friberg H, Rundgren M, Ullen S, Cronberg T. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol. 2017;128(4):681–8.
pubmed: 28169132 doi: 10.1016/j.clinph.2017.01.002
Westhall E, Rossetti AO, van Rootselaar AF, Wesenberg Kjaer T, Horn J, Ullen S, Friberg H, Nielsen N, Rosen I, Aneman A, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology. 2016;86(16):1482–90.
pubmed: 26865516 pmcid: 4836886 doi: 10.1212/WNL.0000000000002462
Hofmeijer J, Beernink TM, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, van Putten MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology. 2015;85(2):137–43.
pubmed: 26070341 pmcid: 4515041 doi: 10.1212/WNL.0000000000001742
Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med. 2012;40(10):2867–75.
pubmed: 22824933 doi: 10.1097/CCM.0b013e31825b94f0
Amorim E, Rittenberger JC, Baldwin ME, Callaway CW, Popescu A, Post Cardiac Arrest Service. Malignant EEG patterns in cardiac arrest patients treated with targeted temperature management who survive to hospital discharge. Resuscitation. 2015;90:127–32.
pubmed: 25779006 pmcid: 4404214 doi: 10.1016/j.resuscitation.2015.03.005
Elmer J, Rittenberger JC, Faro J, Molyneaux BJ, Popescu A, Callaway CW, Baldwin M, Pittsburgh Post-Cardiac Arrest Service. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol. 2016;80(2):175–84.
pubmed: 27351833 pmcid: 4982787 doi: 10.1002/ana.24697
Niedermeyer E. LDSF: Electroencephalography: basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 127–138.
Madhok J, Maybhate A, Xiong W, Koenig MA, Geocadin RG, Jia X, Thakor NV. Quantitative assessment of somatosensory-evoked potentials after cardiac arrest in rats: prognostication of functional outcomes. Crit Care Med. 2010;38(8):1709–17.
pubmed: 20526197 pmcid: 3050516 doi: 10.1097/CCM.0b013e3181e7dd29
Xiong W, Koenig MA, Madhok J, Jia X, Puttgen HA, Thakor NV, Geocadin RG. Evolution of somatosensory evoked potentials after cardiac arrest induced hypoxic-ischemic injury. Resuscitation. 2010;81(7):893–7.
pubmed: 20418008 pmcid: 2893290 doi: 10.1016/j.resuscitation.2010.03.030
Ma Y, Hu Y, Valentin N, Geocadin RG, Thakor NV, Jia X. Time jitter of somatosensory evoked potentials in recovery from hypoxic-ischemic brain injury. J Neurosci Methods. 2011;201(2):355–60.
pubmed: 21878352 pmcid: 3183739 doi: 10.1016/j.jneumeth.2011.08.025
Wu D, Bezerianos A, Zhang H, Jia X, Thakor NV. Exploring high-frequency oscillation as a marker of brain ischemia using S-transform. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:6099–102.
pubmed: 21097133
Kang X, Xiong W, Koenig M, Puttgen HA, Jia X, Geocadin R, Thakor N. Long-term assessment of post-cardiac-arrest neurological outcomes with somatosensory evoked potential in rats. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:2196–9.
pubmed: 19965151
Moshayedi P, Elmer J, Habeych M, Thirumala PD, Crammond DJ, Callaway CW, Balzer JR, Rittenberger JC. Evoked potentials improve multimodal prognostication after cardiac arrest. Resuscitation. 2019;139:92–8.
pubmed: 30995538 pmcid: 6555685 doi: 10.1016/j.resuscitation.2019.04.011
Greer DM, Rosenthal ES, Wu O. Neuroprognostication of hypoxic-ischaemic coma in the therapeutic hypothermia era. Nat Rev Neurol. 2014;10(4):190–203.
pubmed: 24614515 doi: 10.1038/nrneurol.2014.36
Tiainen M, Kovala TT, Takkunen OS, Roine RO. Somatosensory and brainstem auditory evoked potentials in cardiac arrest patients treated with hypothermia. Crit Care Med. 2005;33(8):1736–40.
pubmed: 16096450 doi: 10.1097/01.CCM.0000171536.63641.D9
Bisschops LL, van Alfen N, Bons S, van der Hoeven JG, Hoedemaekers CW. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation. 2011;82(6):696–701.
pubmed: 21419561 doi: 10.1016/j.resuscitation.2011.02.020
Bouwes A, Binnekade JM, Zandstra DF, Koelman JH, van Schaik IN, Hijdra A, Horn J. Somatosensory evoked potentials during mild hypothermia after cardiopulmonary resuscitation. Neurology. 2009;73(18):1457–61.
pubmed: 19884573 doi: 10.1212/WNL.0b013e3181bf98f4
Arch AE, Chiappa K, Greer DM. False positive absent somatosensory evoked potentials in cardiac arrest with therapeutic hypothermia. Resuscitation. 2014;85(6):e97–98.
pubmed: 24582743 doi: 10.1016/j.resuscitation.2014.02.015
Rothstein TL. Therapeutic hypothermia and reliability of somatosensory evoked potentials in predicting outcome after cardiopulmonary arrest. Neurocrit Care. 2012;17(1):146–9.
pubmed: 22547039 doi: 10.1007/s12028-012-9696-y
Gendo A, Kramer L, Hafner M, Funk GC, Zauner C, Sterz F, Holzer M, Bauer E, Madl C. Time-dependency of sensory evoked potentials in comatose cardiac arrest survivors. Intensive Care Med. 2001;27(8):1305–11.
pubmed: 11511943 doi: 10.1007/s001340101008
Zandbergen EG, de Haan RJ, Koelman JH, Hijdra A. Prediction of poor outcome in anoxic-ischemic coma. J Clin Neurophysiol. 2000;17(5):498–501.
pubmed: 11085553 doi: 10.1097/00004691-200009000-00008
Cronberg T, Brizzi M, Liedholm LJ, Rosen I, Rubertsson S, Rylander C, Friberg H. Neurological prognostication after cardiac arrest–recommendations from the Swedish Resuscitation Council. Resuscitation. 2013;84(7):867–72.
pubmed: 23370163 doi: 10.1016/j.resuscitation.2013.01.019
Madl C, Grimm G, Kramer L, Yeganehfar W, Sterz F, Schneider B, Kranz A, Schneeweiss B, Lenz K. Early prediction of individual outcome after cardiopulmonary resuscitation. Lancet. 1993;341(8849):855–8.
pubmed: 8096562 doi: 10.1016/0140-6736(93)93061-5
Wu D, Anastassios B, Xiong W, Madhok J, Jia X, Thakor NV. Study of the origin of short- and long-latency SSEP during recovery from brain ischemia in a rat model. Neurosci Lett. 2010;485(3):157–61.
pubmed: 20816917 pmcid: 2997340 doi: 10.1016/j.neulet.2010.08.086
Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care. 2005;2(2):159–64.
pubmed: 16159058 doi: 10.1385/NCC:2:2:159
Logi F, Fischer C, Murri L, Mauguiere F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2003;114(9):1615–27.
doi: 10.1016/S1388-2457(03)00086-5
Fischer C, Luaute J, Adeleine P, Morlet D. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology. 2004;63(4):669–73.
pubmed: 15326240 doi: 10.1212/01.WNL.0000134670.10384.E2
Prohl J, Rother J, Kluge S, de Heer G, Liepert J, Bodenburg S, Pawlik K, Kreymann G. Prediction of short-term and long-term outcomes after cardiac arrest: a prospective multivariate approach combining biochemical, clinical, electrophysiological, and neuropsychological investigations. Crit Care Med. 2007;35(5):1230–7.
pubmed: 17414735 doi: 10.1097/01.CCM.0000261892.10559.85
Zanatta P, Linassi F, Mazzarolo AP, Arico M, Bosco E, Bendini M, Sorbara C, Ori C, Carron M, Scarpa B. Pain-related Somato Sensory Evoked Potentials: a potential new tool to improve the prognostic prediction of coma after cardiac arrest. Crit Care. 2015;19:403.
pubmed: 26573633 pmcid: 4647335 doi: 10.1186/s13054-015-1119-y
Endisch C, Storm C, Ploner CJ, Leithner C. Amplitudes of SSEP and outcome in cardiac arrest survivors: a prospective cohort study. Neurology. 2015;85(20):1752–60.
pubmed: 26491086 doi: 10.1212/WNL.0000000000002123
Browning JL, Heizer ML, Baskin DS. Variations in corticomotor and somatosensory evoked potentials: effects of temperature, halothane anesthesia, and arterial partial pressure of CO2. Anesth Analg. 1992;74(5):643–8.
pubmed: 1567029 doi: 10.1213/00000539-199205000-00004
Budnick B, McKeown KL, Wiederholt WC. Hypothermia-induced changes in rat short latency somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol. 1981;51(1):19–311.
pubmed: 6161779 doi: 10.1016/0013-4694(81)91506-6
Gollehon D, Kahanovitz N, Happel LT. Temperature effects on feline cortical and spinal evoked potentials. Spine (Phila Pa 1976). 1983;8(5):443–6.
doi: 10.1097/00007632-198307000-00001
Lang M, Welte M, Syben R, Hansen D. Effects of hypothermia on median nerve somatosensory evoked potentials during spontaneous circulation. J Neurosurg Anesthesiol. 2002;14(2):141–5.
pubmed: 11907395 doi: 10.1097/00008506-200204000-00009
Madhok J, Wu D, Xiong W, Geocadin RG, Jia X. Hypothermia amplifies somatosensory-evoked potentials in uninjured rats. J Neurosurg Anesthesiol. 2012;24(3):197–202.
pubmed: 22441433 pmcid: 3372632 doi: 10.1097/ANA.0b013e31824ac36c
Markand ON, Dilley RS, Moorthy SS, Warren C Jr. Monitoring of somatosensory evoked responses during carotid endarterectomy. Arch Neurol. 1984;41(4):375–8.
pubmed: 6703938 doi: 10.1001/archneur.1984.04050160037012
Markand ON, Warren C, Mallik GS, King RD, Brown JW, Mahomed Y. Effects of hypothermia on short latency somatosensory evoked potentials in humans. Electroencephalogr Clin Neurophysiol. 1990;77(6):416–24.
pubmed: 1701704 doi: 10.1016/0168-5597(90)90002-U
Markand ON, Warren C, Mallik GS, Williams CJ. Temperature-dependent hysteresis in somatosensory and auditory evoked potentials. Electroencephalogr Clin Neurophysiol. 1990;77(6):425–35.
pubmed: 1701705 doi: 10.1016/0168-5597(90)90003-V
Russ W, Sticher J, Scheld H, Hempelmann G. Effects of hypothermia on somatosensory evoked responses in man. Br J Anaesth. 1987;59(12):1484–91.
pubmed: 3501304 doi: 10.1093/bja/59.12.1484
Sebel PS, de Bruijn NP, Neville WK. Effect of hypothermia on median nerve somatosensory evoked potentials. J Cardiothorac Anesth. 1988;2(3):326–9.
pubmed: 17171868 doi: 10.1016/0888-6296(88)90313-4
Bauer E, Funk GC, Gendo A, Kramer L, Zauner C, Sterz F, Schneider B, Madl C. Electrophysiological assessment of the afferent sensory pathway in cardiac arrest survivors. Eur J Clin Invest. 2003;33(4):283–7.
pubmed: 12662157 doi: 10.1046/j.1365-2362.2003.01134.x
Young LM. Multimodel quantitative analysis of somatosensory evoked potentials after cardiac arrest with graded hypothermia. In: IEEE, 2016. p. 1846–9.
Greer DM. Mechanisms of injury in hypoxic-ischemic encephalopathy: implications to therapy. Semin Neurol. 2006;26(4):373–9.
pubmed: 16969737 doi: 10.1055/s-2006-948317
Oh SH, Park KN, Choi SP, Oh JS, Kim HJ, Youn CS, Kim SH, Chang K, Kim SH. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care. 2019;23(1):224.
pubmed: 31215475 pmcid: 6582536 doi: 10.1186/s13054-019-2510-x
Endisch C, Waterstraat G, Storm C, Ploner CJ, Curio G, Leithner C. Cortical somatosensory evoked high-frequency (600Hz) oscillations predict absence of severe hypoxic encephalopathy after resuscitation. Clin Neurophysiol Off J Int Fed Clin Neurophys. 2016;127(7):2561–9.
doi: 10.1016/j.clinph.2016.04.014
Ozaki I, Hashimoto I. Exploring the physiology and function of high-frequency oscillations (HFOs) from the somatosensory cortex. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2011;122(10):1908–23.
doi: 10.1016/j.clinph.2011.05.023
Gotz T, Milde T, Curio G, Debener S, Lehmann T, Leistritz L, Witte OW, Witte H, Haueisen J. Primary somatosensory contextual modulation is encoded by oscillation frequency change. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2015;126(9):1769–79.
doi: 10.1016/j.clinph.2014.12.028
Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere F, Rossini PM, Treede RD, Garcia-Larrea L. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(8):1705–19.
doi: 10.1016/j.clinph.2008.03.016
Leanne Moon Y, Choudhary R, Xiaofeng J. Multimodel quantitative analysis of somatosensory evoked potentials after cardiac arrest with graded hypothermia. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society annual conference; 2016. p. 1846–9
Thirumala PD, Udesh R, Muralidharan A, Thiagarajan K, Crammond DJ, Chang YF, Balzer JR. Diagnostic value of somatosensory-evoked potential monitoring during cerebral aneurysm clipping: a systematic review. World Neurosurg. 2016;89:672–80.
pubmed: 26709156 doi: 10.1016/j.wneu.2015.12.008
Lee SY, Lim JY, Kang EK, Han MK, Bae HJ, Paik NJ. Prediction of good functional recovery after stroke based on combined motor and somatosensory evoked potential findings. J Rehabil Med. 2010;42(1):16–20.
pubmed: 20111839 doi: 10.2340/16501977-0475
Lee SY, Kim BR, Han EY. Association between evoked potentials and balance recovery in subacute hemiparetic stroke patients. Ann Rehabil Med. 2015;39(3):451–61.
pubmed: 26161352 pmcid: 4496517 doi: 10.5535/arm.2015.39.3.451
Nwachuku EL, Balzer JR, Yabes JG, Habeych ME, Crammond DJ, Thirumala PD. Diagnostic value of somatosensory evoked potential changes during carotid endarterectomy: a systematic review and meta-analysis. JAMA Neurol. 2015;72(1):73–80.
pubmed: 25383418 doi: 10.1001/jamaneurol.2014.3071
Thirumala PD, Melachuri SR, Kaur J, Ninaci D, Melachuri MK, Habeych ME, Crammond DJ, Balzer JR. The diagnostic accuracy of somatosensory evoked potentials in evaluating new neurological deficits after posterior cervical fusions. Spine (Phila Pa 1976). 2016;42(7):490–6.
doi: 10.1097/BRS.0000000000001882
Curt A, Dietz V. Electrophysiological recordings in patients with spinal cord injury: significance for predicting outcome. Spinal cord. 1999;37(3):157–65.
pubmed: 10213324 doi: 10.1038/sj.sc.3100809
Spiess M, Schubert M, Kliesch U, Halder P. Evolution of tibial SSEP after traumatic spinal cord injury: baseline for clinical trials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2008;119(5):1051–61.
doi: 10.1016/j.clinph.2008.01.021
Liu H, MacMillian EL, Jutzeler CR, Ljungberg E, MacKay AL, Kolind SH, Madler B, Li DKB, Dvorak MF, Curt A, et al. Assessing structure and function of myelin in cervical spondylotic myelopathy: evidence of demyelination. Neurology. 2017;89(6):602–10.
pubmed: 28701500 pmcid: 5562959 doi: 10.1212/WNL.0000000000004197
Houlden DA, Li C, Schwartz ML, Katic M. Median nerve somatosensory evoked potentials and the Glasgow Coma Scale as predictors of outcome in comatose patients with head injuries. Neurosurgery. 1990;27(5):701–7 discussion 707–708.
pubmed: 2259399 doi: 10.1227/00006123-199011000-00006
Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31(3):960–7.
pubmed: 12627012 doi: 10.1097/01.CCM.0000053643.21751.3B
Houlden DA, Taylor AB, Feinstein A, Midha R, Bethune AJ, Stewart CP, Schwartz ML. Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med. 2010;38(1):167–74.
pubmed: 19829103 doi: 10.1097/CCM.0b013e3181c031b3
Zhang R, Yu Y, Manaenko A, Bi H, Zhang N, Zhang L, Zhang T, Ye Z, Sun X. Effect of helium preconditioning on neurological decompression sickness in rats. J Appl Physiol. 2019;126(4):934–40.
pubmed: 30653414 doi: 10.1152/japplphysiol.00275.2018
Pfeifer R, Weitzel S, Gunther A, Berrouschot J, Fischer M, Isenmann S, Figulla HR. Investigation of the inter-observer variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation. 2013;84(10):1375–81.
pubmed: 23747958 doi: 10.1016/j.resuscitation.2013.05.016
Zandbergen EG, Hijdra A, de Haan RJ, van Dijk JG, de Visser BW, Spaans F, Tavy DL, Koelman JH. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117(7):1529–35.
pubmed: 16697253 doi: 10.1016/j.clinph.2006.03.018
Bender A, Howell K, Frey M, Berlis A, Naumann M, Buheitel G. Bilateral loss of cortical SSEP responses is compatible with good outcome after cardiac arrest. J Neurol. 2012;259(11):2481–3.
pubmed: 22688570 doi: 10.1007/s00415-012-6573-8
Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, et al. Targeted temperature management at 33 degrees C versus 36 degrees C after cardiac arrest. N Engl J Med. 2013;369(23):2197–206.
pubmed: 24237006 doi: 10.1056/NEJMoa1310519
Zanatta P, Messerotti Benvenuti S, Baldanzi F, Bosco E. Pain-related middle-latency somatosensory evoked potentials in the prognosis of post anoxic coma: a preliminary report. Minerva Anestesiol. 2012;78(7):749–56.
pubmed: 22337155
Rossetti AO, Urbano LA, Delodder F, Kaplan PW, Oddo M. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care. 2010;14(5):R173.
pubmed: 20920227 pmcid: 3219275 doi: 10.1186/cc9276
Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med. 2014;42(6):1340–7.
pubmed: 24463859 doi: 10.1097/CCM.0000000000000211
Madl C, Kramer L, Domanovits H, Woolard RH, Gervais H, Gendo A, Eisenhuber E, Grimm G, Sterz F. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med. 2000;28(3):721–6.
pubmed: 10752821 doi: 10.1097/00003246-200003000-00020
Zandbergen EG, Koelman JH, de Haan RJ, Hijdra A. Group PR-S: SSEPs and prognosis in postanoxic coma: only short or also long latency responses? Neurology. 2006;67(4):583–6.
pubmed: 16924008 doi: 10.1212/01.wnl.0000230162.35249.7f
Glimmerveen AB, Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, van Putten M, Hofmeijer J. Association between somatosensory evoked potentials and EEG in comatose patients after cardiac arrest. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2019;130(11):2026–31.
doi: 10.1016/j.clinph.2019.08.022

Auteurs

Brittany Lachance (B)

Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.

Zhuoran Wang (Z)

Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA.

Neeraj Badjatia (N)

Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.

Xiaofeng Jia (X)

Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA. xjia@som.umaryland.edu.
Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. xjia@som.umaryland.edu.
Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. xjia@som.umaryland.edu.
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. xjia@som.umaryland.edu.
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. xjia@som.umaryland.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH