Tracheal brush cells release acetylcholine in response to bitter tastants for paracrine and autocrine signaling.
Acetylcholine
/ metabolism
Animals
Autocrine Communication
Calcium
/ metabolism
Chemoreceptor Cells
/ drug effects
Choline O-Acetyltransferase
/ physiology
Flavoring Agents
/ pharmacology
Mice
Mice, Inbred C57BL
Mice, Knockout
Paracrine Communication
Receptors, Muscarinic
/ physiology
Signal Transduction
Single-Cell Analysis
TRPM Cation Channels
/ physiology
Taste
/ drug effects
Trachea
/ drug effects
Transcriptome
acetylcholine
brush cells
mucociliary clearance
single‐cell RNA‐seq
taste
Journal
FASEB journal : official publication of the Federation of American Societies for Experimental Biology
ISSN: 1530-6860
Titre abrégé: FASEB J
Pays: United States
ID NLM: 8804484
Informations de publication
Date de publication:
01 2020
01 2020
Historique:
received:
24
05
2019
revised:
20
10
2019
accepted:
22
10
2019
entrez:
10
1
2020
pubmed:
10
1
2020
medline:
9
7
2020
Statut:
ppublish
Résumé
For protection from inhaled pathogens many strategies have evolved in the airways such as mucociliary clearance and cough. We have previously shown that protective respiratory reflexes to locally released bacterial bitter "taste" substances are most probably initiated by tracheal brush cells (BC). Our single-cell RNA-seq analysis of murine BC revealed high expression levels of cholinergic and bitter taste signaling transcripts (Tas2r108, Gnat3, Trpm5). We directly demonstrate the secretion of acetylcholine (ACh) from BC upon stimulation with the Tas2R agonist denatonium. Inhibition of the taste transduction cascade abolished the increase in [Ca
Identifiants
pubmed: 31914675
doi: 10.1096/fj.201901314RR
doi:
Substances chimiques
Flavoring Agents
0
Receptors, Muscarinic
0
TRPM Cation Channels
0
Trpm5 protein, mouse
0
Choline O-Acetyltransferase
EC 2.3.1.6
Acetylcholine
N9YNS0M02X
Calcium
SY7Q814VUP
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
316-332Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL141251
Pays : United States
Informations de copyright
© 2019 The Authors. The FASEB Journal published by Wiley Periodicals, Inc. on behalf of Federation of American Societies for Experimental Biology.
Références
Chilvers MA, O’Callaghan C. Local mucociliary defence mechanisms. Paediatr Respir Rev. 2000;1:27‐34.
Tizzano M, Gulbransen BD, Vandenbeuch A, et al. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci. 2010;107:3210‐3215.
Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci. 2006;9:628‐635.
Bankova LG, Dwyer DF, Yoshimoto E, et al. The cysteinyl leukotriene 3 receptor regulates expansion of IL‐25–producing airway brush cells leading to type 2 inflammation. Sci Immunol. 2018;3:eaat9453.
Deckmann K, Filipski K, Krasteva‐Christ G, et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc Natl Acad Sci. 2014;111:8287‐8292.
Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci. 2003;100:8981‐8986.
Krasteva G, Canning BJ, Hartmann P, et al. Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci. 2011;108:9478‐9483.
Schütz B, Jurastow I, Bader S, et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front Physiol. 2015;6:1‐14.
Montoro DT, Haber AL, Biton M, et al. A revised airway epithelial hierarchy includes CFTR‐expressing ionocytes. Nature. 2018;560:319‐324.
Nadjsombati MS, McGinty JW, Lyons‐Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity. 2018;49:33‐41.
Plasschaert LW, Žilionis R, Choo‐wing R, et al. A single‐cell atlas of the airway epithelium reveals the CFTR‐rich pulmonary ionocyte. Nature. 2018;560:377‐381.
Tallini YN, Shui B, Greene KS, et al. BAC transgenic mice express enhanced green fluorescent protein in central and peripheral cholinergic neurons. Physiol Genomics. 2006;27:391‐397.
Dando R, Roper SD. Acetylcholine is released from taste cells, enhancing taste signalling. J Physiol. 2012;590:3009‐3017.
Hecker A, Küllmar M, Wilker S, et al. Phosphocholine‐modified macromolecules and canonical nicotinic agonists inhibit ATP‐induced IL‐1β release. J Immunol. 2015;195:2325‐2334.
Hollenhorst MI, Lips KS, Wolff M, et al. Luminal cholinergic signalling in airway lining fluid: a novel mechanism for activating chloride secretion via Ca2+‐dependent Cl‐ and K+ channels. Br J Pharmacol. 2012;166:1388‐1402.
Klein MK, Haberberger RV, Hartmann P, et al. Muscarinic receptor subtypes in cilia‐driven transport and airway epithelial development. Eur Respir J. 2009;33:1113‐1121.
Kummer W, Lips KS, Pfeil U. The epithelial cholinergic system of the airways. Histochem Cell Biol. 2008;130:219‐234.
Lee RJ, Kofonow JM, Rosen PL, et al. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest. 2014;124:1393‐1405.
Lee RJ, Xiong G, Kofonow JM, et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest. 2012;122:4145‐4159.
Myers EN, Runer T, Cervin A, Lindberg S, Uddman R. Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol – Head Neck Surg. 1998;119:278‐287.
Yan CH, Hahn S, McMahon D, et al. Nitric oxide production is stimulated by bitter taste receptors ubiquitously expressed in the sinonasal cavity. Am J Rhinol Allergy. 2017;31:85‐92.
Saunders CJ, Christensen M, Finger TE, Tizzano M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci. 2014;111:6075‐6080.
Kaske S, Krasteva G, König P, et al. TRPM5, a taste‐signaling transient receptor potential ion‐channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 2007;8:49.
Liu S, Lu S, Xu R, et al. Members of bitter taste receptor cluster Tas2r143/Tas2r135/Tas2r126 are expressed in the epithelium of murine airways and other non‐gustatory tissues. Front Physiol. 2017;8:1‐17.
Krasteva G, Canning BJ, Papadakis T, Kummer W. Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci. 2012;91:992‐996.
Martin M. Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.Journal. 2011;17:10‐12.
Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA‐seq aligner. Bioinformatics. 2013;29:15‐21.
Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA‐Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511‐515.
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single‐cell differential expression analysis. Nat Methods. 2014;11:740‐742.
König P, Krain B, Krasteva G, Kummer W. Serotonin increases cilia‐driven particle transport via an acetylcholine‐independent pathway in the mouse trachea. PLoS ONE. 2009;4:1‐7.
Chandrashekar J, Mueller KL, Hoon MA, et al. T2Rs function as bitter taste receptors. Cell. 2000;100:703‐711.
Droguett K, Rios M, Carreño DV, et al. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium. J Physiol. 2017;595:4755‐4767.
Fryer AD, Jacoby DB. Effect of inflammatory cell mediators on M2muscarinic receptors in the lungs. Life Sci. 1993;52:529‐536.
Lossow K, Hübner S, Roudnitzky N, et al. Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans. J Biol Chem. 2016;291:15358‐15377.
Roper SD, Chaudhari N. Taste buds: cells, signals and synapses. Nat Rev Neurosci. 2017;18:485‐497.
Krasteva‐Christ G, Soultanova A, Schütz B, et al. Identification of cholinergic chemosensory cells in mouse tracheal and laryngeal glandular ducts. Int Immunopharmacol. 2015;29:158‐165.
Yamashita J, Ohmoto M, Yamaguchi T, Matsumoto I, Hirota J. Skn‐1a/Pou2f3 functions as a master regulator to generate Trpm5‐expressing chemosensory cells in mice. PLoS ONE. 2017;12:e0189340.
Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 2016;529:226‐230.
Howitt MR, Lavoie S, Michaud M, et al. Tuft cells, taste‐chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329‐1333.
You Y, Huang T, Richer EJ, et al. Role of f‐box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Cell Mol Physiol. 2004;286:L650‐L657.
Finger TE, Kinnamon SC. Taste isn’t just for taste buds anymore. F1000 Biol Rep. 2011;3:1‐7.
Fu Z, Ogura T, Luo W, Lin W. ATP and odor mixture activate TRPM5‐expressing microvillous cells and potentially induce acetylcholine release to enhance supporting cell endocytosis in mouse main olfactory epithelium. Front Cell Neurosci. 2018;12:1‐16.
Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol. 2011;106:1274‐1287.
Luciano L, Reale E, Ruska H. Über eine “chemorezeptive” Sinneszelle in der Trachea der Ratte. Zeitschrift für Zellforsch und Mikroskopische Anat. 1968;85:350‐375.
Bakshani CR, Morales‐Garcia AL, Althaus M, et al. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes. 2018;4:1‐12.
Schmid A, Salathe M. Ciliary beat co‐ordination by calcium. Biol Cell. 2011;103:159‐169.
Carey RM, Lee RJ. Taste receptors in upper airway immunity. Nutrients. 2019;11:1‐17.
Allegretta G, Maurer CK, Eberhard J, et al. In‐depth profiling of MvfR‐regulated small molecules in pseudomonas aeruginosa after quorum sensing inhibitor treatment. Front Microbiol. 2017;8:1‐12.
Freund JR, Mansfield CJ, Doghramji LJ, et al. Activation of airway epithelial bitter taste receptors by Pseudomonas aeruginosa quinolones modulates calcium, cyclic‐AMP, and nitric oxide signaling. J Biol Chem. 2018;293:9824‐9840.
Shah AS, Ben‐Shahar Y, Moninger TO, Kline JN, Welsh MJ. Motile cilia of human airway epithelia are chemosensory. Science. 2009;325:1131‐1134.
Richter K, Mathes V, Fronius M, et al. Phosphocholine‐an agonist of metabotropic but not of ionotropic functions of α9‐containing nicotinic acetylcholine receptors. Sci Rep. 2016;6:1‐13.
Richter K, Sagawe S, Hecker A, et al. C‐reactive protein stimulates nicotinic acetylcholine receptors to control ATP‐mediated monocytic inflammasome activation. Front Immunol. 2018;9.