Loss-of-Function Mutations in NR4A2 Cause Dopa-Responsive Dystonia Parkinsonism.


Journal

Movement disorders : official journal of the Movement Disorder Society
ISSN: 1531-8257
Titre abrégé: Mov Disord
Pays: United States
ID NLM: 8610688

Informations de publication

Date de publication:
05 2020
Historique:
received: 16 07 2019
revised: 13 12 2019
accepted: 26 12 2019
pubmed: 11 1 2020
medline: 28 4 2021
entrez: 11 1 2020
Statut: ppublish

Résumé

The group of dystonia genes is expanding, and mutations of these genes have been associated with various combined dystonia syndromes. Among the latter, the cause of some dystonia parkinsonism cases remains unknown. To report patients with early-onset dystonia parkinsonism as a result of loss-of-function mutations in nuclear receptor subfamily 4 group A member 2. Phenotypic characterization and exome sequencing were carried out in 2 families. The 2 patients reported here both had a history of mild intellectual disability in childhood and subsequently developed dystonia parkinsonism in early adulthood. Brain magnetic resonance imaging was normal, and DATscan suggested bilateral dopaminergic denervation. Two frameshift mutations in NR4A2 were identified: a de novo insertion (NM_006186.3; c.326dupA) in the first case and another small insertion (NM_006186.3; c.881dupA) in the second. NR4A2 haploinsufficiency mutations have been recently reported in neurodevelopmental phenotypes. Our findings indicate that dystonia and/or parkinsonism may appear years after initial symptoms. Mutations in NR4A2 should be considered in patients with unexplained dystonia parkinsonism. © 2020 International Parkinson and Movement Disorder Society.

Sections du résumé

BACKGROUND
The group of dystonia genes is expanding, and mutations of these genes have been associated with various combined dystonia syndromes. Among the latter, the cause of some dystonia parkinsonism cases remains unknown.
OBJECTIVE
To report patients with early-onset dystonia parkinsonism as a result of loss-of-function mutations in nuclear receptor subfamily 4 group A member 2.
METHODS
Phenotypic characterization and exome sequencing were carried out in 2 families.
RESULTS
The 2 patients reported here both had a history of mild intellectual disability in childhood and subsequently developed dystonia parkinsonism in early adulthood. Brain magnetic resonance imaging was normal, and DATscan suggested bilateral dopaminergic denervation. Two frameshift mutations in NR4A2 were identified: a de novo insertion (NM_006186.3; c.326dupA) in the first case and another small insertion (NM_006186.3; c.881dupA) in the second.
CONCLUSIONS
NR4A2 haploinsufficiency mutations have been recently reported in neurodevelopmental phenotypes. Our findings indicate that dystonia and/or parkinsonism may appear years after initial symptoms. Mutations in NR4A2 should be considered in patients with unexplained dystonia parkinsonism. © 2020 International Parkinson and Movement Disorder Society.

Identifiants

pubmed: 31922365
doi: 10.1002/mds.27982
doi:

Substances chimiques

NR4A2 protein, human 0
Nuclear Receptor Subfamily 4, Group A, Member 2 0

Types de publication

Case Reports Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

880-885

Subventions

Organisme : France Parkinson
Pays : International
Organisme : Revue Neurologique
Pays : International

Informations de copyright

© 2020 International Parkinson and Movement Disorder Society.

Références

Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord 2013;28(7):863-873.
Haggstrom L, Darveniza P, Tisch S. Mild parkinsonian features in dystonia: Literature review, mechanisms and clinical perspectives. Parkinsonism Relat Disord 2017;35:1-7.
Balint B, Bhatia KP. Isolated and combined dystonia syndromes-an update on new genes and their phenotypes. Eur J Neurol 2015;22(4):610-617.
Gitiaux C, Roze E, Kinugawa K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: a study of 16 patients. Mov Disord 2008;23(16):2392-2397.
Kasten M, Hartmann C, Hampf J, et al. Genotype-phenotype relations for the Parkinson's disease genes parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord 2018;33(5):730-741.
Wang Z, Benoit G, Liu J, et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 2003;423(6939):555-560.
Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science 1997;276(5310):248-250.
Decressac M, Volakakis N, Björklund A, Perlmann T. NURR1 in Parkinson disease-from pathogenesis to therapeutic potential. Nat Rev Neurol 2013;9(11):629-636.
Le W-D, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003;33(1):85-89.
Lévy J, Grotto S, Mignot C, et al. NR4A2 haploinsufficiency is associated with intellectual disability and autism spectrum disorder. Clin Genet 2018;94(2):264-268.
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat 2015;36(10):928-930.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17(5):405-424.
Ramos LLP, Monteiro FP, Sampaio LPB, et al. Heterozygous loss of function of NR4A2 is associated with intellectual deficiency, rolandic epilepsy, and language impairment. Clin Case Rep 2019;7(8):1582-1584.
Fuller ZL, Berg JJ, Mostafavi H, Sella G, Przeworski M. Measuring intolerance to mutation in human genetics. Nat Genet 2019;51(5):772-776.
Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLOS Genet 2010;6(10):e1001154.
Roze E, Cochen V, Sangla S, et al. Rett syndrome: an overlooked diagnosis in women with stereotypic hand movements, psychomotor retardation, parkinsonism, and dystonia? Mov Disord 2007;22(3):387-389.
Saitsu H, Nishimura T, Muramatsu K, et al. De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 2013;45(4):445-449, 449e1.
Hering R, Petrovic S, Mietz E-M, et al. Extended mutation analysis and association studies of Nurr1 (NR4A2) in Parkinson disease. Neurology 2004;62(7):1231-1232.
Ibáñez P, Lohmann E, Pollak P, et al. Absence of NR4A2 exon 1 mutations in 108 families with autosomal dominant Parkinson disease. Neurology 2004;62(11):2133-2134.
Spathis AD, Asvos X, Ziavra D, et al. Nurr1:RXRα heterodimer activation as monotherapy for Parkinson's disease. Proc Natl Acad Sci U S A 2017;114(15):3999-4004.
Sun C, Wang Y, Mo M, et al. Minocycline protects against rotenone-induced neurotoxicity correlating with upregulation of Nurr1 in a Parkinson's disease rat model. Biomed Res Int 2019;2019:6843265.
Liu W, Gao Y, Chang N. Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 expression in both in vivo and in vitro Parkinson's disease models. Biochem Biophys Res Commun 2017;482(4):1312-1319.
Jiang C, Wan X, He Y, Pan T, Jankovic J, Le W. Age-dependent dopaminergic dysfunction in Nurr1 knockout mice. Exp Neurol 2005;191(1):154-162.
Zhang L, Le W, Xie W, Dani JA. Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson's disease. Neurobiol Aging 2012;33(5):1001.e7-16.

Auteurs

Thomas Wirth (T)

Département de neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

Louise Laure Mariani (LL)

Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France.
Assistance Publique-Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.

Gaber Bergant (G)

Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Michel Baulac (M)

Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France.
Assistance Publique-Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.

Marie-Odile Habert (MO)

Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale, LIB, F-75006, Paris, France.
AP-HP, Hôpital Pitié-Salpêtrière, Médecine Nucléaire, F-75013, Paris, France.

Nathalie Drouot (N)

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.

Emmanuelle Ollivier (E)

Institut IMAGINE, Bioinformatics Platform, Université Paris Descartes, Paris, France.

Alenka Hodžić (A)

Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Gorazd Rudolf (G)

Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia.

Patrick Nitschke (P)

Institut IMAGINE, Bioinformatics Platform, Université Paris Descartes, Paris, France.

Gabrielle Rudolf (G)

Département de neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.

Jamel Chelly (J)

Département de neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Laboratoire de Diagnostic Génétique, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.

Christine Tranchant (C)

Département de neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.

Mathieu Anheim (M)

Département de neurologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.

Emmanuel Roze (E)

Sorbonne Université, Institut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225, F-75013, Paris, France.
Assistance Publique-Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, F-75013, Paris, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH