CRISPR/Cas9-generated models uncover therapeutic vulnerabilities of del(11q) CLL cells to dual BCR and PARP inhibition.


Journal

Leukemia
ISSN: 1476-5551
Titre abrégé: Leukemia
Pays: England
ID NLM: 8704895

Informations de publication

Date de publication:
06 2020
Historique:
received: 18 10 2019
accepted: 14 01 2020
revised: 10 12 2019
pubmed: 25 1 2020
medline: 8 10 2020
entrez: 25 1 2020
Statut: ppublish

Résumé

The deletion of 11q (del(11q)) invariably comprises ATM gene in chronic lymphocytic leukemia (CLL). Concomitant mutations in this gene in the remaining allele have been identified in 1/3 of CLL cases harboring del(11q), being the biallelic loss of ATM associated with adverse prognosis. Although the introduction of targeted BCR inhibition has significantly favored the outcomes of del(11q) patients, responses of patients harboring ATM functional loss through biallelic inactivation are unexplored, and the development of resistances to targeted therapies have been increasingly reported, urging the need to explore novel therapeutic approaches. Here, we generated isogenic CLL cell lines harboring del(11q) and ATM mutations through CRISPR/Cas9-based gene-editing. With these models, we uncovered a novel therapeutic vulnerability of del(11q)/ATM-mutated cells to dual BCR and PARP inhibition. Ex vivo studies in the presence of stromal stimulation on 38 CLL primary samples confirmed a synergistic action of the combination of olaparib and ibrutinib in del(11q)/ATM-mutated CLL patients. In addition, we showed that ibrutinib produced a homologous recombination repair impairment through RAD51 dysregulation, finding a synergistic link of both drugs in the DNA damage repair pathway. Our data provide a preclinical rationale for the use of this combination in CLL patients with this high-risk cytogenetic abnormality.

Identifiants

pubmed: 31974435
doi: 10.1038/s41375-020-0714-3
pii: 10.1038/s41375-020-0714-3
pmc: PMC7266745
mid: NIHMS1563662
doi:

Substances chimiques

Phthalazines 0
Piperazines 0
Piperidines 0
Poly(ADP-ribose) Polymerase Inhibitors 0
Pyrazoles 0
Pyrimidines 0
ibrutinib 1X70OSD4VX
PARP1 protein, human EC 2.4.2.30
Poly (ADP-Ribose) Polymerase-1 EC 2.4.2.30
ATM protein, human EC 2.7.11.1
Ataxia Telangiectasia Mutated Proteins EC 2.7.11.1
BCR protein, human EC 2.7.11.1
Proto-Oncogene Proteins c-bcr EC 2.7.11.1
Adenine JAC85A2161
olaparib WOH1JD9AR8

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1599-1612

Subventions

Organisme : NCI NIH HHS
ID : P01 CA206978
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA006516
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA216273
Pays : United States

Références

Döhner H, Stilgenbauer S, James MR, Benner A, Weilguni T, Bentz M, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89:2516–22.
pubmed: 9116297 doi: 10.1182/blood.V89.7.2516
Neilson JR, Auer R, White D, Bienz N, Waters JJ, Whittaker JA, et al. Deletions at 11q identify a subset of patients with typical CLL who show consistent disease progression and reduced survival. Leukemia. 1997;11:1929–32.
pubmed: 9369428 doi: 10.1038/sj.leu.2400819
Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl J Med. 2000;343:1910–6.
pubmed: 11136261 doi: 10.1056/NEJM200012283432602
Stilgenbauer S, Liebisch P, James MR, Schröder M, Schlegelberger B, Fischer K, et al. Molecular cytogenetic delineation of a novel critical genomic region in chromosome bands 11q22.3-923.1 in lymphoproliferative disorders. Proc Natl Acad Sci USA. 1996;93:11837–41.
pubmed: 8876224 doi: 10.1073/pnas.93.21.11837
Gunnarsson R, Mansouri L, Isaksson A, Göransson H, Cahill N, Jansson M, et al. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia. Haematologica 2011;96:1161–9.
pubmed: 21546498 pmcid: 3148910 doi: 10.3324/haematol.2010.039768
Rose-Zerilli MJJ, Forster J, Parker H, Parker A, Rodriguez AE, Chaplin T, et al. ATM mutation rather than BIRC3 deletion and/or mutation predicts reduced survival in 11q-deleted chronic lymphocytic leukemia: data from the UK LRF CLL4 trial. Haematologica. 2014;99:736–42.
pubmed: 24584352 pmcid: 3971084 doi: 10.3324/haematol.2013.098574
Edelmann J, Holzmann K, Miller F, Winkler D, Bühler A, Zenz T, et al. High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood. 2012;120:4783–94.
pubmed: 23047824 doi: 10.1182/blood-2012-04-423517
Stankovic T, Skowronska A. The role of ATM mutations and 11q deletions in disease progression in chronic lymphocytic leukemia. Leuk Lymphoma. 2014;55:1227–39.
pubmed: 23906020 doi: 10.3109/10428194.2013.829919
Lavin MF. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9:759–69.
pubmed: 18813293 doi: 10.1038/nrm2514 pmcid: 18813293
Choi M, Kipps T, Kurzrock R. ATM mutations in cancer: therapeutic implications. Mol Cancer Ther. 2016;15:1781–91.
pubmed: 27413114 doi: 10.1158/1535-7163.MCT-15-0945
Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J, et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood. 2005;106:3175–82.
pubmed: 16014569 doi: 10.1182/blood-2004-11-4516
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.
pubmed: 26466571 pmcid: 4815041 doi: 10.1038/nature15395
Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526:519–24.
pubmed: 26200345 doi: 10.1038/nature14666
Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25:5448–57.
pubmed: 17968022 doi: 10.1200/JCO.2007.11.2649
Skowronska A, Parker A, Ahmed G, Oldreive C, Davis Z, Richards S, et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J Clin Oncol. 2012;30:4524–32.
pubmed: 23091097 doi: 10.1200/JCO.2011.41.0852
Brown JR, Porter DL, O’Brien SM. Novel treatments for chronic lymphocytic leukemia and moving forward. Am Soc Clin Oncol Educ B. 2014;34:e317–25.
doi: 10.14694/EdBook_AM.2014.34.e317
Barr PM, Robak T, Owen C, Tedeschi A, Bairey O, Bartlett NL, et al. Sustained efficacy and detailed clinical follow-up of first-line ibrutinib treatment in older patients with chronic lymphocytic leukemia: extended phase 3 results from RESONATE-2. Haematologica. 2018;103:1502–10.
pubmed: 29880603 pmcid: 6119145 doi: 10.3324/haematol.2018.192328
Kipps TJ, Fraser G, Coutre SE, Brown JR, Barrientos JC, Barr PM, et al. Long-term studies assessing outcomes of ibrutinib therapy in patients with del(11q) chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2019;19:715–22.
O’Brien S, Furman RR, Coutre S, Flinn IW, Burger JA, Blum K, et al. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131:1910–9.
pubmed: 29437592 pmcid: 5921964 doi: 10.1182/blood-2017-10-810044
Woyach JA, Furman RR, Liu T-M, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N. Engl J Med. 2014;370:2286–94.
pubmed: 24869598 pmcid: 4144824 doi: 10.1056/NEJMoa1400029
Furman RR, Cheng S, Lu P, Setty M, Perez AR, Guo A, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N. Engl J Med. 2014;370:2352–4.
pubmed: 24869597 pmcid: 4512173 doi: 10.1056/NEJMc1402716
Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.
pubmed: 27199251 pmcid: 4876453 doi: 10.1038/ncomms11589
Landau DA, Sun C, Rosebrock D, Herman SEM, Fein J, Sivina M, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun. 2017;8:2185.
pubmed: 29259203 pmcid: 5736707 doi: 10.1038/s41467-017-02329-y
Ahn IE, Underbayev C, Albitar A, Herman SEM, Tian X, Maric I, et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood. 2017;129:1469–79.
pubmed: 28049639 pmcid: 5356450 doi: 10.1182/blood-2016-06-719294
Rodríguez D, Bretones G, Quesada V, Villamor N, Arango JR, López-Guillermo A, et al. Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia. Blood. 2015;126:195–202.
pubmed: 26031915 doi: 10.1182/blood-2014-10-604959
Zenz T, Häbe S, Denzel T, Mohr J, Winkler D, Bühler A, et al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood. 2009;114:2589–97.
pubmed: 19643983 doi: 10.1182/blood-2009-05-224071
Navrkalova V, Sebejova L, Zemanova J, Kminkova J, Kubesova B, Malcikova J, et al. ATM mutations uniformly lead to ATM dysfunction in chronic lymphocytic leukemia: application of functional test using doxorubicin. Haematologica. 2013;98:1124–31.
pubmed: 23585524 pmcid: 3696617 doi: 10.3324/haematol.2012.081620
Arruga F, Gizdic B, Bologna C, Cignetto S, Buonincontri R, Serra S, et al. Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. Leukemia. 2017;31:1882–93.
pubmed: 28017968 doi: 10.1038/leu.2016.383
Close V, Close W, Kugler SJ, Reichenzeller M, Yosifov DY, Bloehdorn J, et al. FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood. 2019;133:830–9.
pubmed: 30510140 doi: 10.1182/blood-2018-09-874529
Yin S, Gambe RG, Sun J, Martinez AZ, Cartun ZJ, Regis FFD, et al. A murine model of chronic lymphocytic leukemia based on B cell-restricted expression of Sf3b1 mutation and Atm deletion. Cancer Cell. 2019;35:283–296.e5.
pubmed: 30712845 pmcid: 6372356 doi: 10.1016/j.ccell.2018.12.013
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.
pubmed: 23287718 pmcid: 3795411 doi: 10.1126/science.1231143
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.
pubmed: 24906146 pmcid: 4343198 doi: 10.1016/j.cell.2014.05.010
Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem. 2014;289:21312–24.
pubmed: 24907273 pmcid: 4118095 doi: 10.1074/jbc.M114.564625
Essletzbichler P, Konopka T, Santoro F, Chen D, Gapp BV, Kralovics R, et al. Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line. Genome Res. 2014;24:2059–65.
pubmed: 25373145 pmcid: 4248322 doi: 10.1101/gr.177220.114
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, Álamo-Quijada M, Benito R, et al. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget. 2017;8:26027–40.
pubmed: 28212528 pmcid: 5432235 doi: 10.18632/oncotarget.15215
Purroy N, Abrisqueta P, Carabia J, Carpio C, Calpe E, Palacio C, et al. Targeting the proliferative and chemoresistant compartment in chronic lymphocytic leukemia by inhibiting survivin protein. Leukemia. 2014;28:1993–2004.
pubmed: 24618734 doi: 10.1038/leu.2014.96
Primo D, Scarfò L, Xochelli A, Mattsson M, Ranghetti P, Espinosa AB, et al. A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget. 2018;9:26019–31.
pubmed: 29899839 pmcid: 5995261 doi: 10.18632/oncotarget.25419
Knittel G, Liedgens P, Reinhardt HC. Targeting ATM-deficient CLL through interference with DNA repair pathways. Front Genet. 2015;6:207.
pubmed: 26113859 pmcid: 4461826 doi: 10.3389/fgene.2015.00207
Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.
pubmed: 12110890 doi: 10.1038/nature00858
Guo A, Lu P, Galanina N, Nabhan C, Smith SM, Coleman M, et al. Heightened BTK-dependent cell proliferation in unmutated chronic lymphocytic leukemia confers increased sensitivity to ibrutinib. Oncotarget. 2016;7:4598–610.
pubmed: 26717038 doi: 10.18632/oncotarget.6727
te Raa GD, Derks IAM, Navrkalova V, Skowronska A, Moerland PD, van Laar J, et al. The impact of SF3B1 mutations in CLL on the DNA-damage response. Leukemia. 2015;29:1133–42.
doi: 10.1038/leu.2014.318
Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 2008;7:1765–71.
doi: 10.1016/j.dnarep.2008.06.018
Seluanov A, Mao Z, Gorbunova V. Analysis of DNA double-strand break (DSB) repair in mammalian cells. J Vis Exp. 2010;e2002.
Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.
pubmed: 23415222 pmcid: 3575604 doi: 10.1016/j.cell.2013.01.019
Wang L, Fan J, Francis JM, Georghiou G, Hergert S, Li S, et al. Integrated single-cell genetic and transcriptional analysis suggests novel drivers of chronic lymphocytic leukemia. Genome Res. 2017;27:1300–11.
pubmed: 28679620 pmcid: 5538547 doi: 10.1101/gr.217331.116
Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.
pubmed: 11571274 doi: 10.1074/jbc.C100466200
Ouillette P, Fossum S, Parkin B, Ding L, Bockenstedt P, Al-Zoubi A, et al. Aggressive chronic lymphocytic leukemia with elevated genomic complexity is associated with multiple gene defects in the response to DNA double-strand breaks. Clin Cancer Res. 2010;16:835–47.
pubmed: 20086003 pmcid: 2818663 doi: 10.1158/1078-0432.CCR-09-2534
Hernández JÁ, Hernández-Sánchez M, Rodríguez-Vicente AE, Grossmann V, Collado R, Heras C, et al. A low frequency of losses in 11q chromosome is associated with better outcome and lower rate of genomic mutations in patients with chronic lymphocytic leukemia. PLoS ONE. 2015;10:e0143073.
pubmed: 26630574 pmcid: 4667902 doi: 10.1371/journal.pone.0143073
Bakhoum SF, Landau DA. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb Perspect Med. 2017;7:a029611.
pubmed: 28213433 pmcid: 5453382 doi: 10.1101/cshperspect.a029611
Puiggros A, Collado R, Calasanz MJ, Ortega M, Ruiz-Xivillé N, Rivas-Delgado A, et al. Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8:54297–303.
pubmed: 28903342 pmcid: 5589581 doi: 10.18632/oncotarget.17350
Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121:3612–21.
pubmed: 26193999 pmcid: 4866653 doi: 10.1002/cncr.29566
Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJS, et al. The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 2010;116:4578–87.
pubmed: 20739657 doi: 10.1182/blood-2010-01-265769
Knittel G, Rehkämper T, Korovkina D, Liedgens P, Fritz C, Torgovnick A, et al. Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia. Nat Commun. 2017;8:153.
pubmed: 28751718 pmcid: 5532225 doi: 10.1038/s41467-017-00210-6
Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus Ofatumumab in previously treated chronic lymphoid leukemia. N. Engl J Med. 2014;371:213–23.
pubmed: 24881631 pmcid: 4134521 doi: 10.1056/NEJMoa1400376
Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmañà J, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Disco. 2012;2:1048–63.
doi: 10.1158/2159-8290.CD-11-0336
Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127:582–95.
pubmed: 26563132 doi: 10.1182/blood-2015-05-644872
Compagno M, Wang Q, Pighi C, Cheong T-C, Meng F-L, Poggio T, et al. Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature. 2017;542:489–93.
pubmed: 28199309 pmcid: 5382874 doi: 10.1038/nature21406
Chanan-Khan A, Cramer P, Demirkan F, Fraser G, Silva RS, Grosicki S, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17:200–11.
pubmed: 26655421 doi: 10.1016/S1470-2045(15)00465-9
Robson M, Im S-A, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N. Engl J Med. 2017;377:523–33.
pubmed: 28578601 doi: 10.1056/NEJMoa1706450
Pujade-Lauraine E, Ledermann JA, Selle F, Gebski V, Penson RT, Oza AM, et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1274–84.
pubmed: 28754483 doi: 10.1016/S1470-2045(17)30469-2

Auteurs

Miguel Quijada-Álamo (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

María Hernández-Sánchez (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Verónica Alonso-Pérez (V)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Ana E Rodríguez-Vicente (AE)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Ignacio García-Tuñón (I)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Marta Martín-Izquierdo (M)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Jesús María Hernández-Sánchez (JM)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Ana B Herrero (AB)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

José María Bastida (JM)

Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Laura San Segundo (L)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Michaela Gruber (M)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
CeMM Research Center for Molecular Medicine, Vienna, Austria.
Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria.

Juan Luis García (JL)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

Shanye Yin (S)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Elisa Ten Hacken (E)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.

Rocío Benito (R)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain.

José Luis Ordóñez (JL)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain. jlog@usal.es.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. jlog@usal.es.

Catherine J Wu (CJ)

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. cwu@partners.org.
Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. cwu@partners.org.

Jesús María Hernández-Rivas (JM)

University of Salamanca, IBSAL, IBMCC, CSIC, Cancer Research Center, Salamanca, Spain. jmhr@usal.es.
Department of Hematology, University Hospital of Salamanca, Salamanca, Spain. jmhr@usal.es.
Department of Medicine, University of Salamanca, Salamanca, Spain. jmhr@usal.es.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH