Reporter-Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis.


Journal

Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360

Informations de publication

Date de publication:
01 07 2020
Historique:
received: 10 12 2019
pubmed: 28 1 2020
medline: 8 6 2021
entrez: 28 1 2020
Statut: ppublish

Résumé

Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.

Identifiants

pubmed: 31984619
doi: 10.1002/cbic.201900748
pmc: PMC7493819
mid: NIHMS1624758
doi:

Substances chimiques

Bacterial Proteins 0
DNA Transposable Elements 0
Lactones 0
Peptides 0
capistruin 0
malleilactone 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1826-1831

Subventions

Organisme : NIAID NIH HHS
ID : DP2 AI124786
Pays : United States

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

mBio. 2013 Nov 05;4(6):e00604-13
pubmed: 24194535
Metab Eng. 2015 Mar;28:134-142
pubmed: 25554073
Nat Chem Biol. 2019 Feb;15(2):161-168
pubmed: 30617293
ACS Chem Biol. 2019 Apr 19;14(4):767-774
pubmed: 30830740
J Ind Microbiol Biotechnol. 2014 Feb;41(2):333-44
pubmed: 24142336
J Ind Microbiol Biotechnol. 2014 Feb;41(2):371-86
pubmed: 23907251
Nature. 2004 Dec 16;432(7019):829-37
pubmed: 15602548
J Bacteriol. 2014 Apr;196(7):1412-24
pubmed: 24464461
J Ind Microbiol Biotechnol. 2014 Feb;41(2):275-84
pubmed: 24212473
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):433-444
pubmed: 30426283
Annu Rev Biochem. 2002;71:847-85
pubmed: 12045113
Appl Environ Microbiol. 2008 May;74(10):2985-9
pubmed: 18310423
J Bacteriol. 2008 Aug;190(15):5339-52
pubmed: 18539738
Nat Biotechnol. 2008 Feb;26(2):225-33
pubmed: 18223641
Nat Prod Rep. 2009 Nov;26(11):1362-84
pubmed: 19844637
J Nat Prod. 2016 Mar 25;79(3):629-61
pubmed: 26852623
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6258-63
pubmed: 21444795
Org Lett. 2010 Feb 19;12(4):716-9
pubmed: 20095633
J Am Chem Soc. 2012 Aug 15;134(32):13192-5
pubmed: 22765305
Appl Environ Microbiol. 2017 Mar 2;83(6):
pubmed: 28062460
J Microbiol Biotechnol. 2019 May 28;29(5):667-686
pubmed: 31091862
Sci Rep. 2017 Aug 29;7(1):9784
pubmed: 28852167
Org Lett. 2011 Mar 18;13(6):1536-9
pubmed: 21348454
FEMS Microbiol Rev. 2017 Jan;41(1):19-33
pubmed: 27576366
J Mol Biol. 2015 Feb 27;427(4):753-755
pubmed: 25562208
Angew Chem Int Ed Engl. 2019 Oct 1;58(40):14129-14133
pubmed: 31353766
J Bacteriol. 2009 Jun;191(12):3909-18
pubmed: 19376863
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11692-7
pubmed: 20547882
Appl Microbiol Biotechnol. 2013 Jan;97(1):87-98
pubmed: 23143535
Chem Rev. 2017 Apr 26;117(8):5389-5456
pubmed: 28256131
Antibiotics (Basel). 2018 May 22;7(2):
pubmed: 29789481
J Bacteriol. 2014 Nov;196(22):3862-71
pubmed: 25182491
ACS Chem Biol. 2020 May 15;15(5):1195-1203
pubmed: 31816232
J Am Chem Soc. 2008 Aug 27;130(34):11446-54
pubmed: 18671394
Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2920-E2928
pubmed: 28320949
Appl Microbiol Biotechnol. 2009 May;83(1):19-25
pubmed: 19305992
ACS Chem Biol. 2016 Aug 19;11(8):2124-30
pubmed: 27367535
ACS Chem Biol. 2015 Nov 20;10(11):2616-23
pubmed: 26352211
J Ind Microbiol Biotechnol. 2017 May;44(4-5):573-588
pubmed: 27520548
Curr Opin Microbiol. 2018 Oct;45:156-163
pubmed: 29883774
Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11611-5
pubmed: 23055407
Org Lett. 2011 Jun 17;13(12):3048-51
pubmed: 21615115
Int J Syst Bacteriol. 1998 Jan;48 Pt 1:317-20
pubmed: 9542103
J Bacteriol. 2015 Nov;197(21):3456-62
pubmed: 26283771
Angew Chem Int Ed Engl. 2019 Apr 23;58(18):5973-5977
pubmed: 30843641
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7266-71
pubmed: 24808135
Appl Environ Microbiol. 2008 Jul;74(14):4498-508
pubmed: 18502918

Auteurs

Dainan Mao (D)

Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.

Aya Yoshimura (A)

Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.

Rurun Wang (R)

Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.

Mohammad R Seyedsayamdost (MR)

Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Animals Huntington Disease Mitochondria Neurons Mice

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents

Classifications MeSH