Chronic activation of endothelial MAPK disrupts hematopoiesis via NFKB dependent inflammatory stress reversible by SCGF.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 02 2020
Historique:
received: 10 04 2019
accepted: 13 01 2020
entrez: 5 2 2020
pubmed: 6 2 2020
medline: 24 4 2020
Statut: epublish

Résumé

Inflammatory signals arising from the microenvironment have emerged as critical regulators of hematopoietic stem cell (HSC) function during diverse processes including embryonic development, infectious diseases, and myelosuppressive injuries caused by irradiation and chemotherapy. However, the contributions of cellular subsets within the microenvironment that elicit niche-driven inflammation remain poorly understood. Here, we identify endothelial cells as a crucial component in driving bone marrow (BM) inflammation and HSC dysfunction observed following myelosuppression. We demonstrate that sustained activation of endothelial MAPK causes NF-κB-dependent inflammatory stress response within the BM, leading to significant HSC dysfunction including loss of engraftment ability and a myeloid-biased output. These phenotypes are resolved upon inhibition of endothelial NF-κB signaling. We identify SCGF as a niche-derived factor that suppresses BM inflammation and enhances hematopoietic recovery following myelosuppression. Our findings demonstrate that chronic endothelial inflammation adversely impacts niche activity and HSC function which is reversible upon suppression of inflammation.

Identifiants

pubmed: 32015345
doi: 10.1038/s41467-020-14478-8
pii: 10.1038/s41467-020-14478-8
pmc: PMC6997369
doi:

Substances chimiques

Antigens, CD 0
Cadherins 0
Hematopoietic Cell Growth Factors 0
Lectins, C-Type 0
NF-kappa B 0
cadherin 5 0
Mitogen-Activated Protein Kinase Kinases EC 2.7.12.2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

666

Subventions

Organisme : NIA NIH HHS
ID : R01 AG065436
Pays : United States
Organisme : NIAMS NIH HHS
ID : R01 AR075585
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA204308
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL133021
Pays : United States

Références

Wagers, A. J. The stem cell niche in regenerative medicine. Cell Stem Cell 10, 362–369 (2012).
pubmed: 22482502 doi: 10.1016/j.stem.2012.02.018
Lane, S. W., Williams, D. A. & Watt, F. M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 32, 795–803 (2014).
pubmed: 25093887 pmcid: 4422171 doi: 10.1038/nbt.2978
Schepers, K., Campbell, T. B. & Passegue, E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 16, 254–267 (2015).
pubmed: 25748932 pmcid: 4391962 doi: 10.1016/j.stem.2015.02.014
Baldridge, M. T., King, K. Y. & Goodell, M. A. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol. 32, 57–65 (2011).
pubmed: 21233016 pmcid: 3042730 doi: 10.1016/j.it.2010.12.003
Zhao, J. L. & Baltimore, D. Regulation of stress-induced hematopoiesis. Curr. Opin. Hematol. 22, 286–292 (2015).
pubmed: 26049748 pmcid: 4573392 doi: 10.1097/MOH.0000000000000149
Boettcher, S. & Manz, M. G. Regulation of inflammation- and infection-driven hematopoiesis. Trends Immunol. 38, 345–357 (2017).
pubmed: 28216309 doi: 10.1016/j.it.2017.01.004
Espin-Palazon, R., Weijts, B., Mulero, V. & Traver, D. Proinflammatory signals as fuel for the fire of hematopoietic stem cell emergence. Trends Cell Biol. 28, 58–66 (2018).
pubmed: 28882414 doi: 10.1016/j.tcb.2017.08.003
Bowers, E. et al. Granulocyte-derived TNFalpha promotes vascular and hematopoietic regeneration in the bone marrow. Nat. Med. 24, 95–102 (2018).
pubmed: 29155425 doi: 10.1038/nm.4448
Kovtonyuk, L. V., Fritsch, K., Feng, X., Manz, M. G. & Takizawa, H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment. Front. Immunol. 7, 502 (2016).
pubmed: 27895645 pmcid: 5107568 doi: 10.3389/fimmu.2016.00502
Pietras, E. M. et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 18, 607–618 (2016).
pubmed: 27111842 pmcid: 4884136 doi: 10.1038/ncb3346
Lussana, F. & Rambaldi, A. Inflammation and myeloproliferative neoplasms. J. Autoimmun. 85, 58–63 (2017).
pubmed: 28669446 doi: 10.1016/j.jaut.2017.06.010
Pietras, E. M. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood 130, 1693–1698 (2017).
pubmed: 28874349 pmcid: 5639485 doi: 10.1182/blood-2017-06-780882
Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).
pubmed: 19265665 pmcid: 3228275 doi: 10.1016/j.stem.2009.01.006
Butler, J. M. et al. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264 (2010).
pubmed: 20207228 pmcid: 2866527 doi: 10.1016/j.stem.2010.02.001
Kobayashi, H. et al. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12, 1046–1056 (2010).
pubmed: 20972423 pmcid: 2972406 doi: 10.1038/ncb2108
Winkler, I. G. et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18, 1651–1657 (2012).
pubmed: 23086476 doi: 10.1038/nm.2969
Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).
pubmed: 22281595 pmcid: 3270376 doi: 10.1038/nature10783
Poulos, M. G. et al. Endothelial jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4, 1022–1034 (2013).
pubmed: 24012753 pmcid: 3805263 doi: 10.1016/j.celrep.2013.07.048
Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).
pubmed: 23434756 pmcid: 3600148 doi: 10.1038/nature11926
Doan, P. L. et al. Epidermal growth factor regulates hematopoietic regeneration after radiation injury. Nat. Med. 19, 295–304 (2013).
pubmed: 23377280 pmcid: 3594347 doi: 10.1038/nm.3070
Poulos, M. G. et al. Endothelial-specific inhibition of NF-kappaB enhances functional haematopoiesis. Nat. Commun. 7, 13829 (2016).
pubmed: 28000664 pmcid: 5187502 doi: 10.1038/ncomms13829
Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).
pubmed: 27074508 pmcid: 5035541 doi: 10.1038/nature17638
Morrison, S. J. & Scadden, D. T. The bone marrow niche for haematopoietic stem cells. Nature 505, 327–334 (2014).
pubmed: 24429631 pmcid: 4514480 doi: 10.1038/nature12984
Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific endothelial cells. Nature 529, 316–325 (2016).
pubmed: 26791722 pmcid: 4878406 doi: 10.1038/nature17040
Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 7, 803–815 (2007).
pubmed: 17893694 doi: 10.1038/nri2171
Boettcher, S. et al. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393–1403 (2014).
pubmed: 24990886 pmcid: 4148762 doi: 10.1182/blood-2014-04-570762
Wang, L. et al. Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-kappaB-dependent manner. Cell Stem Cell 15, 51–65 (2014).
pubmed: 24996169 pmcid: 4398997 doi: 10.1016/j.stem.2014.04.021
Sanchez, A. et al. Map3k8 controls granulocyte colony-stimulating factor production and neutrophil precursor proliferation in lipopolysaccharide-induced emergency granulopoiesis. Sci. Rep. 7, 5010 (2017).
pubmed: 28694430 pmcid: 5503936 doi: 10.1038/s41598-017-04538-3
Roth Flach, R. J. et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat. Commun. 6, 8995 (2015).
pubmed: 26688060 pmcid: 4703891 doi: 10.1038/ncomms9995
Vandoorne, K. et al. Imaging the vascular bone marrow niche during inflammatory stress. Circ. Res. 123, 415–427 (2018).
pubmed: 29980569 pmcid: 6202141 doi: 10.1161/CIRCRESAHA.118.313302
Baker, R. G., Hayden, M. S. & Ghosh, S. NF-kappaB, inflammation, and metabolic disease. Cell Metab. 13, 11–22 (2011).
pubmed: 21195345 pmcid: 3040418 doi: 10.1016/j.cmet.2010.12.008
Bottero, V., Withoff, S. & Verma, I. M. NF-kappaB and the regulation of hematopoiesis. Cell Death Differ. 13, 785–797 (2006).
pubmed: 16528384 doi: 10.1038/sj.cdd.4401888
Brown, K., Park, S., Kanno, T., Franzoso, G. & Siebenlist, U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc. Natl Acad. Sci. USA 90, 2532–2536 (1993).
pubmed: 8460169 doi: 10.1073/pnas.90.6.2532
Wu, C. & Ghosh, S. Differential phosphorylation of the signal-responsive domain of I kappa B alpha and I kappa B beta by I kappa B kinases. J. Biol. Chem. 278, 31980–31987 (2003).
pubmed: 12791687 doi: 10.1074/jbc.M304278200 pmcid: 12791687
Yang, F., Tang, E., Guan, K. & Wang, C. Y. IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J. Immunol. 170, 5630–5635 (2003).
pubmed: 12759443 doi: 10.4049/jimmunol.170.11.5630 pmcid: 12759443
Wessel, A. W. & Hanson, E. P. A method for the quantitative analysis of stimulation-induced nuclear translocation of the p65 subunit of NF-kappaB from patient-derived dermal fibroblasts. Methods Mol. Biol. 1280, 413–426 (2015).
pubmed: 25736764 pmcid: 5597957 doi: 10.1007/978-1-4939-2422-6_25
Boehm, J. S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007).
pubmed: 17574021 doi: 10.1016/j.cell.2007.03.052 pmcid: 17574021
Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1488 (1995).
pubmed: 7878466 doi: 10.1126/science.7878466
Kisseleva, T. et al. NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J. Clin. Invest. 116, 2955–2963 (2006).
pubmed: 17053836 pmcid: 1616192 doi: 10.1172/JCI27392
Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).
pubmed: 29669248 pmcid: 6103525 doi: 10.1016/j.immuni.2018.03.024
Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).
pubmed: 28604734 doi: 10.1038/nri.2017.53
Comazzetto, S. et al. Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin receptor+ niche cells in the bone marrow. Cell Stem Cell 24, 477–486.e476 (2019).
pubmed: 30661958 pmcid: 6813769 doi: 10.1016/j.stem.2018.11.022
Inra, C. N. et al. A perisinusoidal niche for extramedullary haematopoiesis in the spleen. Nature 527, 466–471 (2015).
pubmed: 26570997 pmcid: 4838203 doi: 10.1038/nature15530
Sorensen, I., Adams, R. H. & Gossler, A. DLL1-mediated Notch activation regulates endothelial identity in mouse fetal arteries. Blood 113, 5680–5688 (2009).
pubmed: 19144989 doi: 10.1182/blood-2008-08-174508
Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189–201 (2017).
pubmed: 28218908 pmcid: 5580829 doi: 10.1038/ncb3476
Payne, S., De Val, S. & Neal, A. Endothelial-specific Cre mouse models. Arterioscler Thromb. Vasc. Biol. 38, 2550–2561 (2018).
pubmed: 30354251 pmcid: 6218004 doi: 10.1161/ATVBAHA.118.309669
Kilani, B. et al. Comparison of endothelial promoter efficiency and specificity in mice reveals a subset of Pdgfb-positive hematopoietic cells. J. Thromb. Haemost. 17, 827–840 (2019).
pubmed: 30801958 doi: 10.1111/jth.14417
Forde, A., Constien, R., Grone, H. J., Hammerling, G. & Arnold, B. Temporal Cre-mediated recombination exclusively in endothelial cells using Tie2 regulatory elements. Genesis 33, 191–197 (2002).
pubmed: 12203917 doi: 10.1002/gene.10117
Tang, Y., Harrington, A., Yang, X., Friesel, R. E. & Liaw, L. The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells. Genesis 48, 563–567 (2010).
pubmed: 20645309 pmcid: 2944906 doi: 10.1002/dvg.20654
Gareus, R. et al. Endothelial cell-specific NF-kappaB inhibition protects mice from atherosclerosis. Cell Metab. 8, 372–383 (2008).
pubmed: 19046569 doi: 10.1016/j.cmet.2008.08.016
Korhonen, H. et al. Anaphylactic shock depends on endothelial Gq/G11. J. Exp. Med. 206, 411–420 (2009).
pubmed: 19171764 pmcid: 2646572 doi: 10.1084/jem.20082150
Bartels, K., Grenz, A. & Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc. Natl Acad. Sci. USA 110, 18351–18352 (2013).
pubmed: 24187149 doi: 10.1073/pnas.1318345110
Karhausen, J., Haase, V. H. & Colgan, S. P. Inflammatory hypoxia: role of hypoxia-inducible factor. Cell Cycle 4, 256–258 (2005).
pubmed: 15655360 doi: 10.4161/cc.4.2.1407
Eltzschig, H. K. & Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 364, 656–665 (2011).
pubmed: 21323543 pmcid: 3930928 doi: 10.1056/NEJMra0910283
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).
pubmed: 23991888 pmcid: 3929010 doi: 10.1089/ars.2012.5149
Bigarella, C. L., Liang, R. & Ghaffari, S. Stem cells and the impact of ROS signaling. Development 141, 4206–4218 (2014).
pubmed: 25371358 pmcid: 4302918 doi: 10.1242/dev.107086
Takubo, K. et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010).
pubmed: 20804974 doi: 10.1016/j.stem.2010.06.020
Ludin, A. et al. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid. Redox Signal. 21, 1605–1619 (2014).
pubmed: 24762207 pmcid: 4175025 doi: 10.1089/ars.2014.5941
Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).
pubmed: 24953181 pmcid: 4127103 doi: 10.1016/j.stem.2014.06.008
Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).
pubmed: 23434755 pmcid: 3600153 doi: 10.1038/nature11885
Mossadegh-Keller, N. et al. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497, 239–243 (2013).
pubmed: 23575636 pmcid: 3679883 doi: 10.1038/nature12026
Yue, R., Shen, B. & Morrison, S. J. Clec11a/osteolectin is an osteogenic growth factor that promotes the maintenance of the adult skeleton. Elife 5, https://doi.org/10.7554/eLife.18782 (2016).
Keller, C. C. et al. Suppression of a novel hematopoietic mediator in children with severe malarial anemia. Infect. Immun. 77, 3864–3871 (2009).
pubmed: 19528216 pmcid: 2737985 doi: 10.1128/IAI.00342-09
Ito, C. et al. Serum stem cell growth factor for monitoring hematopoietic recovery following stem cell transplantation. Bone Marrow Transplant. 32, 391–398 (2003).
pubmed: 12900775 doi: 10.1038/sj.bmt.1704152
Mazumder, B., Li, X. & Barik, S. Translation control: a multifaceted regulator of inflammatory response. J. Immunol. 184, 3311–3319 (2010).
pubmed: 20304832 pmcid: 2860598 doi: 10.4049/jimmunol.0903778
McDermott, B. T., Peffers, M. J., McDonagh, B. & Tew, S. R. Translational regulation contributes to the secretory response of chondrocytic cells following exposure to Interleukin-1beta. J. Biol. Chem. https://doi.org/10.1074/jbc.RA118.006865 (2019).
doi: 10.1074/jbc.RA118.006865 pubmed: 31300557 pmcid: 6721953
Li, X. M., Hu, Z., Jorgenson, M. L., Wingard, J. R. & Slayton, W. B. Bone marrow sinusoidal endothelial cells undergo nonapoptotic cell death and are replaced by proliferating sinusoidal cells in situ to maintain the vascular niche following lethal irradiation. Exp. Hematol. 36, 1143–1156 (2008).
doi: 10.1016/j.exphem.2008.04.013
Baselet, B., Sonveaux, P., Baatout, S. & Aerts, A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol. Life Sci. 76, 699–728 (2019).
pubmed: 30377700 doi: 10.1007/s00018-018-2956-z
Zhang, H. et al. Sepsis induces hematopoietic stem cell exhaustion and myelosuppression through distinct contributions of TRIF and MYD88. Stem Cell Rep. 6, 940–956 (2016).
doi: 10.1016/j.stemcr.2016.05.002
Mirantes, C., Passegue, E. & Pietras, E. M. Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp. Cell Res. 329, 248–254 (2014).
pubmed: 25149680 pmcid: 4250307 doi: 10.1016/j.yexcr.2014.08.017
Geest, C. R. & Coffer, P. J. MAPK signaling pathways in the regulation of hematopoiesis. J. Leukoc. Biol. 86, 237–250 (2009).
pubmed: 19498045 doi: 10.1189/jlb.0209097
Xiao, L., Liu, Y. & Wang, N. New paradigms in inflammatory signaling in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 306, H317–H325 (2014).
pubmed: 24285111 doi: 10.1152/ajpheart.00182.2013
Korpela, E. & Liu, S. K. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage. Radiat. Oncol. 9, 266 (2014).
pubmed: 25518850 pmcid: 4279961 doi: 10.1186/s13014-014-0266-7
Halle, M. et al. Sustained inflammation due to nuclear factor-kappa B activation in irradiated human arteries. J. Am. Coll. Cardiol. 55, 1227–1236 (2010).
pubmed: 20298930 doi: 10.1016/j.jacc.2009.10.047
Munshi, A. & Ramesh, R. Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 4, 401–408 (2013).
pubmed: 24349638 pmcid: 3863336 doi: 10.1177/1947601913485414
Wang, Y., Liu, L. & Zhou, D. Inhibition of p38 MAPK attenuates ionizing radiation-induced hematopoietic cell senescence and residual bone marrow injury. Radiat. Res. 176, 743–752 (2011).
pubmed: 22014293 pmcid: 3390189 doi: 10.1667/RR2727.1
Dong, F. et al. Cadmium induces vascular permeability via activation of the p38 MAPK pathway. Biochem. Biophys. Res. Commun. 450, 447–452 (2014).
pubmed: 24909688 doi: 10.1016/j.bbrc.2014.05.140
Li, L. et al. P38/MAPK contributes to endothelial barrier dysfunction via MAP4 phosphorylation-dependent microtubule disassembly in inflammation-induced acute lung injury. Sci. Rep. 5, 8895 (2015).
pubmed: 25746230 pmcid: 4352893 doi: 10.1038/srep08895
Brown, G. D., Willment, J. A. & Whitehead, L. C-type lectins in immunity and homeostasis. Nat. Rev. Immunol. 18, 374–389 (2018).
pubmed: 29581532 doi: 10.1038/s41577-018-0004-8 pmcid: 29581532
Srinivasan, L. et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 139, 573–586 (2009).
pubmed: 19879843 pmcid: 2787092 doi: 10.1016/j.cell.2009.08.041
Benedito, R. et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137, 1124–1135 (2009).
pubmed: 19524514 doi: 10.1016/j.cell.2009.03.025
DeFalco, J. et al. Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291, 2608–2613 (2001).
pubmed: 11283374 doi: 10.1126/science.1056602
Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).
pubmed: 19567251 doi: 10.1016/j.jim.2009.06.008
Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004 (2010).
pubmed: 21165148 pmcid: 3000457 doi: 10.1371/journal.pone.0015004

Auteurs

Pradeep Ramalingam (P)

Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.

Michael G Poulos (MG)

Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA.

Elisa Lazzari (E)

Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA.

Michael C Gutkin (MC)

Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA.

David Lopez (D)

Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.

Christopher C Kloss (CC)

Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.

Michael J Crowley (MJ)

Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.

Lizabeth Katsnelson (L)

Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.

Ana G Freire (AG)

Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA.

Matthew B Greenblatt (MB)

Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA.

Christopher Y Park (CY)

Department of Pathology, New York University Langone Health, School of Medicine, New York, NY, 10016, USA.

Jason M Butler (JM)

Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, 07110, USA. jason.butler@hmh-cdi.org.
Molecular Oncology Program, Georgetown University, Washington, DC, 20057, USA. jason.butler@hmh-cdi.org.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH