Oncogene-dependent function of BRG1 in hepatocarcinogenesis.


Journal

Cell death & disease
ISSN: 2041-4889
Titre abrégé: Cell Death Dis
Pays: England
ID NLM: 101524092

Informations de publication

Date de publication:
04 02 2020
Historique:
received: 05 09 2019
accepted: 15 11 2019
revised: 14 11 2019
entrez: 6 2 2020
pubmed: 6 2 2020
medline: 10 3 2021
Statut: epublish

Résumé

Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Genomic studies have revealed that HCC is a heterogeneous disease with multiple subtypes. BRG1, encoded by the SMARCA4 gene, is a key component of SWI/SNF chromatin-remodeling complexes. Based on TCGA studies, somatic mutations of SMARCA4 occur in ~3% of human HCC samples. Additional studies suggest that BRG1 is overexpressed in human HCC specimens and may promote HCC growth and invasion. However, the precise functional roles of BRG1 in HCC remain poorly delineated. Here, we analyzed BRG1 in human HCC samples as well as in mouse models. We found that BRG1 is overexpressed in most of human HCC samples, especially in those associated with poorer prognosis. BRG1 expression levels positively correlate with cell cycle and negatively with metabolic pathways in the Cancer Genome Atlas (TCGA) human HCC data set. In a murine HCC model induced by c-MYC overexpression, ablation of the Brg1 gene completely repressed HCC formation. In striking contrast, however, we discovered that concomitant deletion of Brg1 and overexpression of c-Met or mutant NRas (NRAS

Identifiants

pubmed: 32019910
doi: 10.1038/s41419-020-2289-3
pii: 10.1038/s41419-020-2289-3
pmc: PMC7000409
doi:

Substances chimiques

Nuclear Proteins 0
Transcription Factors 0
Proto-Oncogene Proteins c-met EC 2.7.10.1
SMARCA4 protein, human EC 3.6.1.-
Smarca4 protein, mouse EC 3.6.1.-
DNA Helicases EC 3.6.4.-

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

91

Subventions

Organisme : NIDDK NIH HHS
ID : P30 DK026743
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA136606
Pays : United States
Organisme : NCI NIH HHS
ID : R03 CA208215
Pays : United States

Références

Bertuccio, P. et al. Global trends and predictions in hepatocellular carcinoma mortality. J. Hepatol. 67, 302–309 (2017).
pubmed: 28336466 doi: 10.1016/j.jhep.2017.03.011 pmcid: 28336466
Dutta, R. & Mahato, R. I. Recent advances in hepatocellular carcinoma therapy. Pharmacol. Ther. 173, 106–117 (2017).
pubmed: 28174094 pmcid: 5777523 doi: 10.1016/j.pharmthera.2017.02.010
Iñarrairaegui, M., Melero, I. & Sangro, B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin. Cancer Res. 24, 1518–1524 (2018).
pubmed: 29138342 doi: 10.1158/1078-0432.CCR-17-0289 pmcid: 29138342
Ho, L. & Crabtree, G. R. Chromatin remodelling during development. Nature 463, 474–484 (2010).
pubmed: 20110991 pmcid: 3060774 doi: 10.1038/nature08911
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).
pubmed: 14645854 doi: 10.1126/science.1090701 pmcid: 14645854
Mohrmann, L. et al. Differential targeting of two distinct SWI/SNF-related drosophila chromatin-remodeling complexes. Mol. Cell Biol. 24, 3077–3088 (2004).
pubmed: 15060132 pmcid: 381637 doi: 10.1128/MCB.24.8.3077-3088.2004
Kadoch, C. et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat. Genet. 45, 592–601 (2013).
pubmed: 23644491 pmcid: 3667980 doi: 10.1038/ng.2628
Alfert, A., Moreno, N. & Kerl, K. The BAF complex in development and disease. Epigenetics Chromatin 12, 19 (2019).
pubmed: 30898143 pmcid: 6427853 doi: 10.1186/s13072-019-0264-y
Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017, 169, 1327–1341. e1323.
Alexander, J. M. et al. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142, 1418–1430 (2015).
pubmed: 25813539 pmcid: 4392595 doi: 10.1242/dev.109496
Endo, M. et al. Alterations of the SWI/SNF chromatin remodelling subunit‐BRG1 and BRM in hepatocellular carcinoma. Liver Int. 33, 105–117 (2013).
pubmed: 23088494 doi: 10.1111/liv.12005 pmcid: 23088494
Zhu, P. et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat. Commun. 7, 13608 (2016).
pubmed: 27905400 pmcid: 5146280 doi: 10.1038/ncomms13608
Sentani, K. et al. Increased expression but not genetic alteration of BRG1, a component of the SWI/SNF complex, is associated with the advanced stage of human gastric carcinomas. Pathobiology 69, 315–320 (2002).
doi: 10.1159/000064638
Torkamandi, S. et al. Role of Brg1 in progression of esophageal squamous cell carcinoma. Iran. J. Basic Med. Sci. 17, 912–916 (2014).
pubmed: 25691934 pmcid: 4328101
Bai, J. et al. BRG1 expression is increased in human glioma and controls glioma cell proliferation, migration and invasion in vitro. J. Cancer Res. Clin. Oncol. 138, 991–998 (2012).
pubmed: 22362300 doi: 10.1007/s00432-012-1172-8 pmcid: 22362300
Lin, H., Wong, R. P. C., Martinka, M. & Li, G. BRG1 expression is increased in human cutaneous melanoma. Br. J. Dermatol. 163, 502 (2010).
pubmed: 20491765 doi: 10.1111/j.1365-2133.2010.09851.x pmcid: 20491765
Guichard, C. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat. Genet. 44, 694–698 (2012).
pubmed: 22561517 pmcid: 3819251 doi: 10.1038/ng.2256
Kaufmann, B. et al. BRG1 promotes hepatocarcinogenesis by regulating proliferation and invasiveness. PLoS ONE 12, e0180225 (2017).
pubmed: 28700662 pmcid: 5507512 doi: 10.1371/journal.pone.0180225
Chen, Z. et al. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death Dis. 9, 59 (2018).
pubmed: 29352111 pmcid: 5833410 doi: 10.1038/s41419-017-0090-8
Tate, J. G. et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 47, D941–D947 (2018).
pmcid: 6323903 doi: 10.1093/nar/gky1015 pubmed: 6323903
Wang, B. et al. Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle. Sci. Rep. 9, 2320 (2019).
pubmed: 30787318 pmcid: 6382836 doi: 10.1038/s41598-019-38568-w
Abou-Elella, A., Gramlich, T., Fritsch, C. & Gansler, T. c-myc amplification in hepatocellular carcinoma predicts unfavorable prognosis. Mod. Pathol. 9, 95–98 (1996).
pubmed: 8657726 pmcid: 8657726
Liu, P. et al. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c-Myc-driven hepatocarcinogenesis. Hepatology 66, 167–181 (2017).
pubmed: 28370287 pmcid: 5481473 doi: 10.1002/hep.29183
Chen, X. & Calvisi, D. F. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am. J. Pathol. 184, 912–923 (2014).
pubmed: 24480331 pmcid: 3969989 doi: 10.1016/j.ajpath.2013.12.002
Calvisi, D. F. et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130, 1117–1128 (2006).
pubmed: 16618406 doi: 10.1053/j.gastro.2006.01.006 pmcid: 16618406
Lee, S. A. et al. Integration of genomic analysis and in vivo transfection to identify sprouty 2 as a candidate tumor suppressor in liver cancer. Hepatology 47, 1200–1210 (2008).
pubmed: 18214995 doi: 10.1002/hep.22169 pmcid: 18214995
Qiao, Y. et al. Oncogenic potential of N-terminal deletion and S45Y mutant β-catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer 18, 1093 (2018).
pubmed: 30419856 pmcid: 6233269 doi: 10.1186/s12885-018-4870-z
Xu, Z. et al. Loss of Pten synergizes with c-Met to promote hepatocellular carcinoma development via mTORC2 pathway. Exp. Mol. Med. 50, e417 (2018).
pubmed: 29303510 pmcid: 5992985 doi: 10.1038/emm.2017.158
Savas, S. & Skardasi, G. The SWI/SNF complex subunit genes: Their functions, variations, and links to risk and survival outcomes in human cancers. Crit. Rev. Oncol. Hematol. 123, 114–131 (2018).
pubmed: 29482773 doi: 10.1016/j.critrevonc.2018.01.009 pmcid: 29482773
Ally, A. et al. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341. e1323 (2017).
doi: 10.1016/j.cell.2017.05.046
Zhong, R. et al. Genetic variant in SWI/SNF complexes influences hepatocellular carcinoma risk: a new clue for the contribution of chromatin remodeling in carcinogenesis. Sci. Rep. 4, 4147 (2014).
pubmed: 24556940 pmcid: 3930892 doi: 10.1038/srep04147
Endo, M. et al. Alterations of the SWI/SNF chromatin remodelling subunit‐BRG 1 and BRM in hepatocellular carcinoma. Liver Int. 33, 105–117 (2013).
pubmed: 23088494 doi: 10.1111/liv.12005 pmcid: 23088494
Sun, X. et al. Arid1a has context-dependent oncogenic and tumor suppressor functions in liver cancer. Cancer Cell 32, 574–589. e576 (2017).
pubmed: 29136504 pmcid: 5728182 doi: 10.1016/j.ccell.2017.10.007
Roy, N. et al. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev. 29, 658–671 (2015).
pubmed: 25792600 pmcid: 4378197 doi: 10.1101/gad.256628.114
Ho, C. et al. AKT (v‐akt murine thymoma viral oncogene homolog 1) and N‐Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c‐Myc pathways. Hepatology 55, 833–845 (2012).
pubmed: 21993994 doi: 10.1002/hep.24736 pmcid: 21993994
Tao, J. et al. Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and point‐mutant β‐catenin. Hepatology 64, 1587–1605 (2016).
pubmed: 27097116 pmcid: 5073058 doi: 10.1002/hep.28601
Qiao, Y. et al. Axis inhibition protein 1 (Axin1) deletion–induced hepatocarcinogenesis requires intact β‐catenin but not notch cascade in mice. Hepatology 70, 2003–2017 (2019).
pubmed: 30737831 doi: 10.1002/hep.30556 pmcid: 30737831
Shi, J. et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662 (2013).
pubmed: 24285714 pmcid: 3877755 doi: 10.1101/gad.232710.113
Gérard, C. et al. Dynamics and predicted drug response of a gene network linking dedifferentiation with beta-catenin dysfunction in hepatocellular carcinoma. J. Hepatol. 71, 323–332 (2019).
pubmed: 30953666 doi: 10.1016/j.jhep.2019.03.024 pmcid: 30953666
Fillmore, C. M. et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature 520, 239 (2015).
pubmed: 25629630 pmcid: 4393352 doi: 10.1038/nature14122
Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. 111, 3128–3133 (2014).
pubmed: 24520176 doi: 10.1073/pnas.1316793111
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1–pl1 (2013).
pubmed: 23550210 pmcid: 4160307 doi: 10.1126/scisignal.2004088
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
Chandrashekar, D. S. et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658 (2017).
pubmed: 5516091 pmcid: 5516091 doi: 10.1016/j.neo.2017.05.002
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313 pmcid: 27207943
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Hu, G. et al. Transformation of accessible chromatin and 3D nucleome underlies lineage commitment of early T cells. Immunity 48, 227–242. e228 (2018).
pubmed: 29466755 pmcid: 5847274 doi: 10.1016/j.immuni.2018.01.013
Liu, P. et al. A functional mammalian target of rapamycin complex 1 signaling is indispensable for c‐Myc‐driven hepatocarcinogenesis. Hepatology 66, 167–181 (2017).
pubmed: 28370287 pmcid: 5481473 doi: 10.1002/hep.29183
Méndez-Lucas, A. et al. Glucose catabolism in liver tumors induced by c-MYC can be sustained by various PKM1/PKM2 ratios and pyruvate kinase activities. Cancer Res. 77, 4355–4364 (2017).
pubmed: 28630053 pmcid: 5559320 doi: 10.1158/0008-5472.CAN-17-0498
Von Figura, G. et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat. Cell Biol. 16, 255 (2014).
doi: 10.1038/ncb2916

Auteurs

Pan Wang (P)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

Xinhua Song (X)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

Dan Cao (D)

Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Kairong Cui (K)

Systems Biology Center, NHLBI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA.

Jingxiao Wang (J)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

Kirsten Utpatel (K)

Institute of Pathology, University of Regensburg, Regensburg, Germany.

Runze Shang (R)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, China.

Haichuan Wang (H)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Li Che (L)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.

Matthias Evert (M)

Institute of Pathology, University of Regensburg, Regensburg, Germany.

Keji Zhao (K)

Systems Biology Center, NHLBI, NIH, 9000 Rockville Pike, Bethesda, MD, 20892, USA.

Diego F Calvisi (DF)

Institute of Pathology, University of Regensburg, Regensburg, Germany. diego.calvisi@klinik.uni-regensburg.de.
Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy. diego.calvisi@klinik.uni-regensburg.de.

Xin Chen (X)

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA. xin.chen@ucsf.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH