Isolation and characterization of two satellite DNAs in Atlantolacerta andreanskyi (Werner, 1929) (Reptilia, Lacertidae).
Atlantolacerta andreanskyi
Atlas dwarf lizard
centromeric satellite DNA
fluorescence in situ hybridization
pericentromeric satellite DNA
Journal
Journal of experimental zoology. Part B, Molecular and developmental evolution
ISSN: 1552-5015
Titre abrégé: J Exp Zool B Mol Dev Evol
Pays: United States
ID NLM: 101168228
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
05
04
2019
revised:
29
11
2019
accepted:
30
01
2020
pubmed:
16
2
2020
medline:
12
2
2021
entrez:
16
2
2020
Statut:
ppublish
Résumé
Two satellite DNAs (satDNAs) have been isolated and characterized from three populations of Atlantolacerta andreanskyi. One satDNA (AAN-TaqI) has been isolated here from the first time. It is characterized by a tendency to AT enrichment (AT = 54.2%) and monomer length ranging from 187 to 199 bp. FISH experiments showed that this element occurs in subterminal position on the short arms of all chromosomes of the complement. The analyses of genetic variability of AAN-TaqI showed that the concerted evolution is acting effectively on these repeats that form separate clusters consistent with the geographic origin in the phylogenetic tree, thus supporting the hypothesis that A. andreanskyi would be a species complex. In addition, in the population from Jbel Aoulime this satDNA is already differentiated into two subfamilies. The other satDNA belongs to the family of IMO-TaqI already isolated in other lacertids. Differently from AAN-TaqI, concerted evolution does not seem to act effectively on this element that is not differentiated between populations. These results confirm that IMO-TaqI (AT = 53.4%) is conserved in both chromosomal position and most of its sequence in the lacertids from which it has been characterized so far. Its remarkable evolutionary conservation for about 45 million years could indicate that this satDNA may have a functional role that future investigations could unveil. Once again, this study shows how satDNAs coexisting in the same genome may differ in their evolutionary pattern, even though the reasons underlying this phenomenon in the species here studied have still to be fully understood.
Substances chimiques
DNA, Satellite
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
178-191Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Arnason, U., Gretarsdottir, S., & Widegren, B. (1992). Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. Molecular Biology and Evolution, 9, 1018-1028.
Arnold, E. N., Arribas, O., & Carranza, S. (2007). Systematics of the Palaearctic and oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430, 1-86.
Bachmann, L., & Sperlich, D. (1993). Gradual evolution of a specific satellite DNA family in Drosophila ambigua, D. tristis, and D. obscura. Molecular Biology and Evolution, 10, 647-659.
Bandyopadhyay, R., McQuillan, C., Page, S. L., Choo, K. H. A., & Shaffer, L. G. (2001). Identification and characterization of satellite III subfamilies to the acrocentric chromosomes. Chromosome Research, 9, 223-233.
Barata, M., Carranza, S., & Harris, D. J. (2012). Extreme genetic diversity in the lizard Atlantolacerta andreanskyi (Werner, 1929): A montane cryptic species complex. BMC Evolutionary Biology, 12, 167. https://doi.org/10.1186/1471-2148-12-167
Capriglione, T. (2000). Repetitive DNA as a tool to study the phylogeny of cold-blooded vertebrates. Chromosomes Today, 13, 183-194.
Capriglione, T., Cardone, A., Odierna, G., & Olmo, E. (1991). Evolution of a centromeric satellite DNA and phylogeny of lacertid lizards. Comparative Biochemistry and Physiology Part B: Biochemistry & Molecular Biology, 100, 641-645.
Capriglione, T., Cardone, A., Odierna, G., & Olmo, E. (1994). Further data on the occurrence and evolution of satellite DNA families in the lacertid genome. Chromosome Research, 2, 327-330.
Capriglione, T., Olmo, E., Odierna, G., Smith, D. I., & Miller, O. J. (1989). Genome composition and tandemly repetitive sequence at some centromeres in the lizard Podarcis s. sicula Raf. Genetica, 79, 85-91.
Capriglione, T., De Santo, M. G., Odierna, G., & Olmo, E. (1998). An alphoid-like satellite DNA sequence is present in the genome of a lacertid lizard. Journal of Molecular Evolution, 46, 240-244.
Caputo, V., Giovannotti, M., Nisi Cerioni, P., Splendiani, A., & Olmo, E. (2009). Chromosomal study of native and hatchery trouts from Italy (Salmo trutta complex, Salmonidae): Conventional and FISH analysis. Cytogenetic and Genome Research, 124, 51-62.
Caputo, V., Giovannotti, M., Nisi Cerioni, P., Splendiani, A., Tagliavini, J., & Olmo, E. (2011). Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): Conventional and FISH analysis. Chromosome Research, 19, 481-491.
Chaiprasertsri, N., Uno, Y., Peyachoknagul, S., Prakhongcheep, O., Baicharoen, S., Charernsuk, S., … Srikulnath, K. (2013). Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterisation of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota). Journal of Heredity, 104, 798-806.
Ciobanu, D., Grechko, V. V., & Darevsky, I. S. (2003). Molecular evolution of satellite DNA CLsat in lizards from the genus Darevskia (Sauria: Lacertidae): Correlation with species diversity. Russian Journal of Genetics, 39, 1527-1541.
Ciobanu, D. G., Grechko, V. V., Darevsky, I. S., & Kramerov, D. A. (2004). New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. Journal of Experimental Zoology, 302B, 505-516.
Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModel Test 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772.
de la Herrán, R., Fontana, F., Lanfredi, M., Congiu, L., Leis, M., Rossi, R., … Garrido-Ramos, M. A. (2001). Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. Molecular Biology and Evolution, 18, 432-436.
Dover, G. A. (1982). Molecular drive: A cohesive mode of species evolution. Nature, 299, 111-117.
Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
Enukashvily, N. I., & Ponomartsev, N. V. (2013). Mammalian satellite DNA: A speaking dumb. Advances in Protein Chemistry and Structural Biology, 90, 31-65.
Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479-491.
Garrido-Ramos, M. A. (2017). Satellite DNA: An evolving topic. Genes, 8(9), 230. https://doi.org/10.3390/genes8090230
Geniez, P. (2006). Atlantolacerta andreanskyi. The IUCN Red List of Threatened Species 2006: e.T61518A12500447. Retrieved from https://doi.org/10.2305/IUCN.UK.2006.RLTS.T61518A12500447.en
Giovannotti, M., Nisi Cerioni, P., Caputo, V., & Olmo, E. (2009). Characterisation of a GC-rich telomeric satellite DNA in Eumeces schneideri Daudin (Reptilia, Scincidae). Cytogenetic and Genome Research, 125, 272-278.
Giovannotti, M., Nisi Cerioni, P., Rojo, V., Olmo, E., Slimani, T., Splendiani, A., & Caputo Barucchi, V. (2018). Characterization of a satellite DNA in the genera Lacerta and Timon (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. Journal of Experimental Zoology B: Molecular and Developmental Evolution, 330, 83-95. https://doi.org/10.1002/jez.b.22790
Giovannotti, M., Nisi Cerioni, P., Slimani, T., Splendiani, A., Paoletti, A., Fawzi, A., … Caputo Barucchi, V. (2017). Cytogenetic characterization of a population of Acanthodactylus lineomaculatus Duméril and Bibron, 1839 (Reptilia, Lacertidae) from South-western Morocco and insights into sex chromosome evolution. Cytogenetic and Genome Research, 153, 86-95. https://doi.org/10.1159/000484533
Giovannotti, M., Rojo, V., Nisi Cerioni, P., González-Tizón, A., Martínez-Lage, A., Splendiani, A., … Caputo Barucchi, V. (2014). Isolation and characterization of two satellite DNAs in some Iberian rock lizards (Squamata, Lacertidae). Journal of Experimental Zoology B: Molecular and Developmental Evolution, 322, 13-26. https://doi.org/10.1002/jez.b.22530
Giovannotti, N., Nisi Cerioni, P., Splendiani, A., Ruggeri, P., Olmo, E., & Caputo Barucchi, V. (2013). Slow evolving satellite DNAs: The case of a centromeric satellite in Chalcides ocellatus (Forskâl, 1775) (Reptilia, Scincidae). Amphibia-Reptilia, 34, 401-411.
Grechko, V. V., Ciobanu, D. G., Darevsky, I. S., Kosushkin, S. A., & Kramerov, D. A. (2006). Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae). Genome, 49, 1297-1307.
Grechko, V. V., Ciobanu, D. G., Darevsky, I. S., & Kramerov, D. A. (2005). Satellite DNA of lizards of the genus Lacerta s. str. (the group L. agilis), the family Lacertidae. Doklady Biochemistry and Biophysics, 400, 44-47.
Harris, D. J., & Arnold, E. N. (1999). Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia, 3, 749-754.
Hipsley, C. A., Himmelmann, L., Metzler, D., & Müller, J. (2009). Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evolutionary Biology, 9, 151. https://doi.org/10.1186/1471-2148-9-151
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755.
Jantsch, M., Hamilton, B., Mayr, B., & Schweizer, D. (1990). Meiotic chromosome behavior reflects levels of sequence divergence in Sus scrofa domestica satellite III DNA. Chromosoma, 99, 330-335.
Kohany, O., Gentles, A. J., Hankus, L., & Jurka, J. (2006). Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and censor. BMC Bioinformatics, 7, 474.
Kuznetsova, I. S., Enukashvily, N. I., Noniashvili, E. M., Shatrova, A. N., Aksenov, N. D., Zenin, V. V., … Podgornaya, O. I. (2007). Evidence for the existence of satellite DNA-containing connection between metaphase chromosomes. Journal of Cellular Biochemistry, 101, 1046-1061.
Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
Maeda, N., & Smithies, O. (1986). The evolution of multigene families: Human haptoglobin genes. Annual Review of Genetics, 20, 81-108.
Matsubara, K., Uno, Y., Srikulnath, K., Seki, R., Nishida, C., & Matsuda, Y. (2015). Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (Protobothrops flavoviridis, Viperidae) and the Burmese python (Python bivittatus, Pythonidae). Chromosoma, 124, 529-539.
Matsuda, Y., & Chapman, V. M. (1995). Application of fluorescence in situ hybridization in genome analysis of the mouse. Electrophoresis, 16, 261-272.
Mayer, W., & Benyr, G. (1994). Albumin-evolution und phylogenese in der Familie Lacertidae. Annual Naturhistorisches Museum Wien, 96B, 621-648.
Navajas-Pérez, R., de la Herrán, R., Jamilena, M., Lozano, R., Ruiz Rejón, C., Ruiz Rejón, M., & Garrido-Ramos, M. A. (2005). Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). Journal of Molecular Evolution, 60, 391-399.
Navajas-Pérez, R., Ruiz Rejón, M., Garrido-Ramos, M. A., Aznarte, J. L., & Rubio-Escudero, C. (2007). SatDNA Analyzer: A computing tool for satellite-DNA evolutionary analysis. Bioinformatics, 23, 767-768.
Nijman, I. J., & Lenstra, J. A. (2001). Mutation and recombination in cattle satellite DNA: A feedback model for the evolution of satellite repeats. Journal of Molecular Evolution, 52, 361-371.
Ohno, S., Trujillo, J. M., Kaplan, W. D., & Kinosita, R. (1961). Nucleolus-organizer in the causation of chromosomal abnormalities. Lancet, 2, 123-126.
Olmo, E., Odierna, G., & Capriglione, T. (1993). The karyology of Mediterranean lacertid lizards. In ED. Valakos, W. Boehme, V. Pérez-Mellado, & P. Maragou (Eds.), Lacertids of the mediterranean region: A biological approach (pp. 61-84). Athens: Hellenic Zoological Society.
Palomeque, T., & Lorite, P. (2008). Satellite DNA in insects: A review. Heredity, 100, 564-573.
Pavlicev, M., & Mayer, W. (2009). Fast radiation of the subfamily Lacertinae (Reptilia: Lacertidae): History or methodical artefact? Molecular Phylogenetics and Evolution, 52(3), 727-734.
Pokorná, M., Giovannotti, M., Kratochvíl, L., Kasai, F., Trifonov, V. A., O'Brien, P. C. M., … Rens, W. (2011). Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma, 120, 455-468. https://doi.org/10.1007/s00412-011-0322-0
Prakhongcheep, O., Thapana, W., Suntronpong, A., Singchat, W., Pattanatanang, K., Phatcharakullawarawat, R., … Srikulnath, K. (2017). Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (Varanidae, Squamata). BMC Evolutionary Biology, 17, 193. https://doi.org/10.1186/s12862-017-1044-6
Rens, W., Fu, B., O'Brien, P. C. M., & Ferguson-Smith, M. A. (2006). Cross-species chromosome painting. Nature Protocols, 1, 783-790.
Robles, F., de la Herrán, R., Ludwig, A., Rejón, C. R., Rejón, M. R., & Garrido-Ramos, M. A. (2004). Evolution of ancient satellite DNAs in sturgeon genomes. Gene, 338, 133-142.
Rojo, V., Martínez-Lage, A., Giovannotti, M., González-Tizón, A. M., Nisi Cerioni, P., Caputo Barucchi, V., … Naveira, H. (2015). Evolutionary dynamics of two satellite DNA families in rock lizards of the genus Iberolacerta (Squamata, Lacertidae): Different histories but common traits. Chromosome Research, 23, 441-461.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-554.
Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
Schmid, M., Grunert, D., Haaf, T., & Engel, W. (1983). A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenetics and Cell Genetics, 36, 554-561.
Schneider, S., Roessli, D., & Excoffier, L. (2000). Arlequin, version 2.000: A software for population genetic data analysis. Geneva, Switzerland: Genetics and Biometry Laboratory, University of Geneva.
Sindaco, R., & Jeremčenko, V. (2008). The reptiles of the western plearctic (pp. 1-579). Latina, Italy: Edizioni Belvedere.
Singh, L., Purdom, I. F., & Jones, K. W. (1976). Satellite DNA and evolution of sex chromosomes. Chromosoma, 59, 43-62.
Strachan, T., Webb, D., & Dover, G. (1985). Transition stages of molecular drive in multiple-copy DNA families in Drosophila. EMBO Journal, 4, 1701-1708.
Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin. Experimental Cell Research, 75, 304-306.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731-2739.
Tuck-Muller, C. M., Bordson, B. L., Varela, M., & Bennett, J. W. (1984). NOR associations with heterochromatin. Cytogenetics and Cell Genetics, 38, 165-170.
Uetz, P., Freed, P., & Hošek, J. (2019). (eds.) The Reptile Database. Retrieved from http://www.reptile-database.org
Vicari, M. R., Nogaroto, V., Noleto, R. B., Cestari, M. M., Cioffi, M. B., Almeida, M. C., … Artoni, R. F. (2010). Satellite DNA and chromosomes in Neotropical fishes: Methods, applications and perspectives. Journal of Fish Biology, 76, 1094-1116.
Vittorazzi, S. E., Bolsoni Lourenço, L., & Recco-Pimentel, S. M. (2014). Longtime evolution and highly dynamic satellite DNA in leptodactylid and hylodidfrogs. BMC Genetics, 15, 111.
Volobouev, V., Pasteur, G., Bons, J., Guillaume, C. P., & Dutrillaux, B. (1990). Sex chromosome evolution in reptiles: Divergence between two lizards long regarded as sister species, Lacerta vivipara and Lacerta andreanskyi. Genetica, 83, 85-91.
Wilcox, T. P., Zwickl, D. J., Heath, T. A., & Hillis, D. M. (2002). Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25, 361-371.