Direct conversion of carlactonoic acid to orobanchol by cytochrome P450 CYP722C in strigolactone biosynthesis.


Journal

Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440

Informations de publication

Date de publication:
12 2019
Historique:
received: 03 05 2019
accepted: 01 11 2019
entrez: 18 2 2020
pubmed: 18 2 2020
medline: 6 6 2020
Statut: epublish

Résumé

Strigolactones (SLs) are carotenoid-derived phytohormones and rhizosphere signaling molecules for arbuscular mycorrhizal fungi and root parasitic weeds. Why and how plants produce diverse SLs are unknown. Here, cytochrome P450 CYP722C is identified as a key enzyme that catalyzes the reaction of BC-ring closure leading to orobanchol, the most prevalent canonical SL. The direct conversion of carlactonoic acid to orobanchol without passing through 4-deoxyorobanchol is catalyzed by the recombinant enzyme. By knocking out the gene in tomato plants, orobanchol was undetectable in the root exudates, whereas the architecture of the knockout and wild-type plants was comparable. These findings add to our understanding of the function of the diverse SLs in plants and suggest the potential of these compounds to generate crops with greater resistance to infection by noxious root parasitic weeds.

Identifiants

pubmed: 32064317
doi: 10.1126/sciadv.aax9067
pii: aax9067
pmc: PMC6989309
doi:

Substances chimiques

Lactones 0
Recombinant Proteins 0
orobanchol 0
Cytochrome P-450 Enzyme System 9035-51-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

eaax9067

Informations de copyright

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Références

Plant Methods. 2018 Oct 12;14:88
pubmed: 30337949
Genome Inform. 2009 Oct;23(1):117-27
pubmed: 20180267
Plant Physiol. 1998 Jan;116(1):357-67
pubmed: 9449848
Phytochemistry. 2017 May;137:123-131
pubmed: 28215609
J Pestic Sci. 2018 Aug 20;43(3):198-206
pubmed: 30363087
New Phytol. 2018 Jun;218(4):1522-1533
pubmed: 29479714
J Exp Bot. 2018 Apr 23;69(9):2231-2239
pubmed: 29522151
Plant Physiol. 2004 Apr;134(4):1439-49
pubmed: 15064374
Phytochemistry. 2014 Dec;108:122-8
pubmed: 25446236
Phytochemistry. 2013 Sep;93:41-8
pubmed: 23597492
Front Plant Sci. 2018 Jul 03;9:916
pubmed: 30018630
Science. 2012 Mar 16;335(6074):1348-51
pubmed: 22422982
Nature. 2008 Sep 11;455(7210):195-200
pubmed: 18690207
Phytochemistry. 2016 Oct;130:90-8
pubmed: 27264641
Bioinformatics. 2014 Apr 15;30(8):1180-1182
pubmed: 24389662
Int J Mol Sci. 2018 Sep 06;19(9):
pubmed: 30200620
Planta. 2007 Dec;227(1):125-32
pubmed: 17684758
Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18084-9
pubmed: 25425668
Phytochemistry. 2019 Jan;157:200-205
pubmed: 30439621
Plant J. 2011 Apr;66(1):194-211
pubmed: 21443632
Front Plant Sci. 2016 May 13;7:634
pubmed: 27242837
Pest Manag Sci. 2009 May;65(5):453-9
pubmed: 19206075
Proc Natl Acad Sci U S A. 2014 Jan 28;111(4):1640-5
pubmed: 24434551
J Agric Food Chem. 2011 Oct 12;59(19):10485-90
pubmed: 21899364
Bioinformatics. 2005 Sep 15;21(18):3674-6
pubmed: 16081474
Plant Cell Physiol. 2006 Mar;47(3):426-31
pubmed: 16381658
Plant Physiol Biochem. 2018 Oct;131:70-77
pubmed: 29735370
J Exp Bot. 2018 Apr 23;69(9):2205-2218
pubmed: 29385517
PLoS One. 2018 Jul 26;13(7):e0200854
pubmed: 30048467
New Phytol. 2018 Jul;219(1):297-309
pubmed: 29655242
J Exp Bot. 2018 Apr 23;69(9):2305-2318
pubmed: 29294064
Genes Cells. 2013 Jun;18(6):450-8
pubmed: 23573916
Plant Cell. 2006 Nov;18(11):3275-88
pubmed: 17138693
Nature. 2008 Sep 11;455(7210):189-94
pubmed: 18690209
Phytochemistry. 2014 Jul;103:85-88
pubmed: 24768285
Nat Chem Biol. 2014 Dec;10(12):1028-33
pubmed: 25344813
Mol Plant. 2017 Mar 6;10(3):530-532
pubmed: 28089950
Science. 1966 Dec 2;154(3753):1189-90
pubmed: 17780042
Biosci Biotechnol Biochem. 2009 Nov;73(11):2460-5
pubmed: 19897913

Auteurs

Takatoshi Wakabayashi (T)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Misaki Hamana (M)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Ayami Mori (A)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Ryota Akiyama (R)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Kotomi Ueno (K)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Keishi Osakabe (K)

Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan.

Yuriko Osakabe (Y)

Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8503, Japan.

Hideyuki Suzuki (H)

Kazusa DNA Research Institute, Kazusa-kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan.

Hirosato Takikawa (H)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Masaharu Mizutani (M)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Yukihiro Sugimoto (Y)

Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.

Articles similaires

Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Lung India Sheep Transcriptome
Humans Circadian Rhythm Adult Aged Aging

Classifications MeSH