Nociception in a Progressive Multiple Sclerosis Model in Mice Is Dependent on Spinal TRPA1 Channel Activation.
Acetanilides
/ pharmacology
Acetophenones
/ pharmacology
Analgesics
/ pharmacology
Animals
Antipyrine
/ analogs & derivatives
Dipyrone
/ pharmacology
Encephalomyelitis, Autoimmune, Experimental
/ complications
Female
Hyperalgesia
/ drug therapy
Mice
Mice, Inbred C57BL
Myelin-Oligodendrocyte Glycoprotein
/ immunology
NADPH Oxidases
/ antagonists & inhibitors
Nerve Tissue Proteins
/ biosynthesis
Neuralgia
/ drug therapy
Nociception
/ drug effects
Oligonucleotides, Antisense
/ pharmacology
Oxidative Stress
Oximes
/ pharmacology
Peptide Fragments
/ immunology
Pregabalin
/ pharmacology
Purines
/ pharmacology
Spinal Cord
/ physiopathology
TRPA1 Cation Channel
/ antagonists & inhibitors
Thioctic Acid
/ pharmacology
Up-Regulation
/ drug effects
4-HNE
A-967079
Central neuropathic pain
EAE
HC 030031
NADPH oxidase
Journal
Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963
Informations de publication
Date de publication:
May 2020
May 2020
Historique:
received:
13
11
2019
accepted:
14
02
2020
pubmed:
26
2
2020
medline:
4
2
2021
entrez:
26
2
2020
Statut:
ppublish
Résumé
Central neuropathic pain is a common untreated symptom in progressive multiple sclerosis (PMS) and is associated with poor quality of life and interference with patients' daily activities. The neuroinflammation process and mitochondrial dysfunction in the PMS lesions generate reactive species. The transient potential receptor ankyrin 1 (TRPA1) has been identified as one of the major mechanisms that contribute to neuropathic pain signaling and can be activated by reactive compounds. Thus, the goal of our study was to evaluate the role of spinal TRPA1 in the central neuropathic pain observed in a PMS model in mice. We used C57BL/6 female mice (20-30 g), and the PMS model was induced by the experimental autoimmune encephalomyelitis (EAE) using mouse myelin oligodendrocyte glycoprotein (MOG
Identifiants
pubmed: 32095993
doi: 10.1007/s12035-020-01891-9
pii: 10.1007/s12035-020-01891-9
doi:
Substances chimiques
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide
0
A 967079
0
Acetanilides
0
Acetophenones
0
Analgesics
0
Myelin-Oligodendrocyte Glycoprotein
0
Nerve Tissue Proteins
0
Oligonucleotides, Antisense
0
Oximes
0
Peptide Fragments
0
Purines
0
TRPA1 Cation Channel
0
Trpa1 protein, mouse
0
myelin oligodendrocyte glycoprotein (35-55)
0
Pregabalin
55JG375S6M
Dipyrone
6429L0L52Y
Thioctic Acid
73Y7P0K73Y
acetovanillone
B6J7B9UDTR
NADPH Oxidases
EC 1.6.3.-
propyphenazone
OED8FV75PY
Antipyrine
T3CHA1B51H
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2420-2435Subventions
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 306576/2017-1
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 23038.006930/2014/59
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88882.427871/2019-01
Organisme : Fondation L'Oréal Brazil
ID : L'ORÉAL - ABC - UNESCO Para Mulheres na Ciência, 2016
Références
Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O (2018) Multiple sclerosis. Lancet 391:1622–1636. https://doi.org/10.1016/S0140-6736(18)30481-1
doi: 10.1016/S0140-6736(18)30481-1
pubmed: 29576504
Ontaneda D, Thompson AJ, Fox RJ, Cohen JA (2017) Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389:1357–1366. https://doi.org/10.1016/S0140-6736(16)31320-4
doi: 10.1016/S0140-6736(16)31320-4
pubmed: 27889191
Harbo HF, Gold R, Tintora M (2013) Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord 6:237–248. https://doi.org/10.1177/1756285613488434
doi: 10.1177/1756285613488434
pubmed: 23858327
pmcid: 3707353
Benson C, Kerr BJ (2014) Pain and cognition in multiple sclerosis. Curr Top Behav Neurosci 20:201–215. https://doi.org/10.1007/7854_2014_309
doi: 10.1007/7854_2014_309
pubmed: 24850077
Yousuf MS, Noh M, Friedman TN et al (2019) Sensory neurons of the dorsal root ganglia become hyperexcitable in a T-cell-mediated MOG-EAE model of multiple sclerosis. ENEURO 6:ENEURO.0024-19.2019. https://doi.org/10.1523/ENEURO.0024-19.2019
doi: 10.1523/ENEURO.0024-19.2019
pubmed: 30957012
pmcid: 6449162
Drulovic J, Basic-Kes V, Grgic S, Vojinovic S, Dincic E, Toncev G, Kezic MG, Kisic-Tepavcevic D et al (2015) The prevalence of pain in adults with multiple sclerosis: a multicenter cross-sectional survey. Pain Med 16:1597–1602. https://doi.org/10.1111/pme.12731
Brichetto G, Uccelli MM, Mancardi GL, Solaro C (2003) Symptomatic medication use in multiple sclerosis. Mult Scler J 9:458–460. https://doi.org/10.1191/1352458503ms957oa
doi: 10.1191/1352458503ms957oa
Solaro C, Messmer Uccelli M (2010) Pharmacological management of pain in patients with multiple sclerosis. Drugs 70:1–1254. https://doi.org/10.2165/11537930-000000000-00000
doi: 10.2165/11537930-000000000-00000
Duffy SS, Lees JG, Moalem-Taylor G (2014) The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int 2014:285245. https://doi.org/10.1155/2014/285245
doi: 10.1155/2014/285245
pubmed: 25374694
pmcid: 4211315
Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912. https://doi.org/10.1038/nri2190
doi: 10.1038/nri2190
pubmed: 17917672
Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x
doi: 10.1111/j.1476-5381.2011.01302.x
pubmed: 21371012
pmcid: 3229753
Aicher SA, Silverman MB, Winkler CW, Bebo BF (2004) Hyperalgesia in an animal model of multiple sclerosis. Pain 110:560–570. https://doi.org/10.1016/j.pain.2004.03.025
doi: 10.1016/j.pain.2004.03.025
pubmed: 15288396
Olechowski CJ, Truong JJ, Kerr BJ (2009) Neuropathic pain behaviours in a chronic-relapsing model of experimental autoimmune encephalomyelitis (EAE). Pain 141:156–164. https://doi.org/10.1016/j.pain.2008.11.002
doi: 10.1016/j.pain.2008.11.002
pubmed: 19084337
Duffy SS, Keating BA, Perera CJ, Lees JG, Tonkin RS, Makker PGS, Carrive P, Butovsky O et al (2019) Regulatory T cells and their derived cytokine, interleukin-35, reduce pain in experimental autoimmune encephalomyelitis. J Neurosci 39:2326–2346. https://doi.org/10.1523/JNEUROSCI.1815-18.2019
Fu W, Taylor BK (2015) Activation of cannabinoid CB2 receptors reduces hyperalgesia in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Neurosci Lett 595:1–6. https://doi.org/10.1016/j.neulet.2015.04.002
doi: 10.1016/j.neulet.2015.04.002
pubmed: 25849525
pmcid: 4464808
Bernardes D, Oliveira ALR (2017) Comprehensive catwalk gait analysis in a chronic model of multiple sclerosis subjected to treadmill exercise training. BMC Neurol 17:160. https://doi.org/10.1186/s12883-017-0941-z
doi: 10.1186/s12883-017-0941-z
pubmed: 28830377
pmcid: 5568395
Österberg A, Boivie J, Thuomas K-Å (2005) Central pain in multiple sclerosis - prevalence and clinical characteristics. Eur J Pain 9:531–542. https://doi.org/10.1016/j.ejpain.2004.11.005
doi: 10.1016/j.ejpain.2004.11.005
pubmed: 16139182
Osterberg A, Boivie J (2010) Central pain in multiple sclerosis - sensory abnormalities. Eur J Pain 14:104–110. https://doi.org/10.1016/j.ejpain.2009.03.003
doi: 10.1016/j.ejpain.2009.03.003
pubmed: 19359204
Su K, Bourdette D, Forte M (2013) Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front Physiol 4:169
doi: 10.3389/fphys.2013.00169
Khan N, Gordon R, Woodruff TM, Smith MT (2015) Antiallodynic effects of alpha lipoic acid in an optimized RR-EAE mouse model of MS-neuropathic pain are accompanied by attenuation of upregulated BDNF-TrkB-ERK signaling in the dorsal horn of the spinal cord. Pharmacol Res Perspect:3, e00137. https://doi.org/10.1002/prp2.137
Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC et al (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112:819–829. https://doi.org/10.1016/S0092-8674(03)00158-2
Sahoo SS, Majhi RK, Tiwari A et al (2019) Transient receptor potential ankyrin1 channel is endogenously expressed in T cells and is involved in immune functions. Biosci Rep 39:BSR20191437. https://doi.org/10.1042/BSR20191437
doi: 10.1042/BSR20191437
pubmed: 31488616
pmcid: 6753326
Benemei S, De Cesaris F, Fusi C et al (2013) TRPA1 and other TRP channels in migraine. J Headache Pain 14:71. https://doi.org/10.1186/1129-2377-14-71
doi: 10.1186/1129-2377-14-71
pubmed: 23941062
pmcid: 3844362
Sawada Y, Hosokawa H, Matsumura K, Kobayashi S (2008) Activation of transient receptor potential ankyrin 1 by hydrogen peroxide. Eur J Neurosci 27:1131–1142. https://doi.org/10.1111/j.1460-9568.2008.06093.x
doi: 10.1111/j.1460-9568.2008.06093.x
pubmed: 18364033
Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E et al (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524. https://doi.org/10.1073/pnas.0705923104
Pinheiro FDV, Villarinho JG, Silva CR et al (2015) The involvement of the TRPA1 receptor in a mouse model of sympathetically maintained neuropathic pain. Eur J Pharmacol 747:105–113. https://doi.org/10.1016/j.ejphar.2014.11.039
doi: 10.1016/j.ejphar.2014.11.039
pubmed: 25498793
Trevisan G, Benemei S, Materazzi S, de Logu F, de Siena G, Fusi C, Fortes Rossato M, Coppi E et al (2016) TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress. Brain 139:1361–1377. https://doi.org/10.1093/brain/aww038
De Logu F, Nassini R, Materazzi S et al (2017) Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 8:1887. https://doi.org/10.1038/s41467-017-01739-2
doi: 10.1038/s41467-017-01739-2
pubmed: 29192190
pmcid: 5709495
Eberhardt MJ, Filipovic MR, Leffler A, de la Roche J, Kistner K, Fischer MJ, Fleming T, Zimmermann K et al (2012) Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J Biol Chem 287:28291–28306. https://doi.org/10.1074/jbc.M111.328674
Andersson DA, Gentry C, Light E et al (2013) Methylglyoxal evokes pain by stimulating TRPA1. PLoS One 8:e77986. https://doi.org/10.1371/journal.pone.0077986
doi: 10.1371/journal.pone.0077986
pubmed: 24167592
pmcid: 3805573
Nassini R, Gees M, Harrison S, de Siena G, Materazzi S, Moretto N, Failli P, Preti D et al (2011) Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152:1621–1631. https://doi.org/10.1016/j.pain.2011.02.051
Meents JE, Ciotu CI, Fischer MJM (2019) Trpa1: A molecular view. J Neurophysiol 121:427–443
doi: 10.1152/jn.00524.2018
Bölcskei K, Kriszta G, Sághy É, Payrits M, Sipos É, Vranesics A, Berente Z, Ábrahám H et al (2018) Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice. J Neuroimmunol 320:1–10. https://doi.org/10.1016/J.JNEUROIM.2018.03.020
Sághy É, Sipos É, Ács P et al (2016) TRPA1 deficiency is protective in cuprizone-induced demyelination-a new target against oligodendrocyte apoptosis. Glia 64:2166–2180. https://doi.org/10.1002/glia.23051
doi: 10.1002/glia.23051
pubmed: 27568827
McGrath JC, Lilley E (2015) Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. Br J Pharmacol 172:3189–3193. https://doi.org/10.1111/bph.12955
doi: 10.1111/bph.12955
pubmed: 25964986
pmcid: 4500358
Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109–110. https://doi.org/10.1016/0304-3959(83)90201-4
doi: 10.1016/0304-3959(83)90201-4
pubmed: 6877845
Souza PS, Gonçalves ED, Pedroso GS, Farias HR, Junqueira SC, Marcon R, Tuon T, Cola M et al (2017) Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood-brain barrier disruption. Mol Neurobiol 54:4723–4737. https://doi.org/10.1007/s12035-016-0014-0
Dutra RC, Bento AF, Leite DFP, Manjavachi MN, Marcon R, Bicca MA, Pesquero JB, Calixto JB (2013) The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes. Neurobiol Dis 54:82–93. https://doi.org/10.1016/j.nbd.2013.02.007
doi: 10.1016/j.nbd.2013.02.007
pubmed: 23454198
Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 14(1):1810. https://doi.org/10.1038/nprot.2006.285
doi: 10.1038/nprot.2006.285
Meyer OA, Tilson HA, Byrd WC, Riley MT (1979) A method for the routine assessment of fore- and hindlimb grip strength of rats and mice. Neurobehav Toxicol 1:233–236
pubmed: 551317
Ahmed RU, Alam M, Zheng YP (2019) Experimental spinal cord injury and behavioral tests in laboratory rats. Heliyon 5
Olechowski CJ, Tenorio G, Sauve Y, Kerr BJ (2013) Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE). Exp Neurol 241:113–121. https://doi.org/10.1016/J.EXPNEUROL.2012.12.012
doi: 10.1016/J.EXPNEUROL.2012.12.012
pubmed: 23291347
Vadakkan KI, Jia YH, Zhuo M (2005) A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain 6:747–756. https://doi.org/10.1016/j.jpain.2005.07.005
doi: 10.1016/j.jpain.2005.07.005
pubmed: 16275599
Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63. https://doi.org/10.1016/0165-0270(94)90144-9
doi: 10.1016/0165-0270(94)90144-9
pubmed: 7990513
de Almeida AS, Rigo FK, De Prá SD-T et al (2019) Characterization of cancer-induced nociception in a murine model of breast carcinoma. Cell Mol Neurobiol 39:605–617. https://doi.org/10.1007/s10571-019-00666-8
doi: 10.1007/s10571-019-00666-8
pubmed: 30850915
Dixon WJ (1980) Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol 20:441–462. https://doi.org/10.1146/annurev.pa.20.040180.002301
doi: 10.1146/annurev.pa.20.040180.002301
pubmed: 7387124
Trevisan G, Materazzi S, Fusi C, Altomare A, Aldini G, Lodovici M, Patacchini R, Geppetti P et al (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res 73:3120–3131. https://doi.org/10.1158/0008-5472.CAN-12-4370
Veiga-Júnior VF, Rosas EC, Carvalho MV et al (2007) Chemical composition and anti-inflammatory activity of copaiba oils from Copaifera cearensis Huber ex Ducke, Copaifera reticulata Ducke and Copaifera multijuga Hayne-a comparative study. J Ethnopharmacol 112:248–254. https://doi.org/10.1016/j.jep.2007.03.005
doi: 10.1016/j.jep.2007.03.005
pubmed: 17446019
Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL, Grabowska U, Classon B et al (2016) Selective cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J Pharmacol Exp Ther 358:387–396. https://doi.org/10.1124/jpet.116.232926
Antoniazzi CTDD, Nassini R, Rigo FK et al (2018) Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain. Int J Cancer. https://doi.org/10.1002/ijc.31911
Nassini R, Fusi C, Materazzi S, Coppi E, Tuccinardi T, Marone IM, de Logu F, Preti D et al (2015) The TRPA1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. Br J Pharmacol 172:3397–3411. https://doi.org/10.1111/bph.13129
Andrade EL, Luiz AP, Ferreira J, Calixto JB (2008) Pronociceptive response elicited by TRPA1 receptor activation in mice. Neuroscience 152:511–520. https://doi.org/10.1016/J.NEUROSCIENCE.2007.12.039
doi: 10.1016/J.NEUROSCIENCE.2007.12.039
pubmed: 18272293
da Costa DSM, Meotti FC, Andrade EL, Leal PC, Motta EM, Calixto JB (2010) The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain 148:431–437. https://doi.org/10.1016/j.pain.2009.12.002
doi: 10.1016/j.pain.2009.12.002
pubmed: 20056530
Hylden JLK, Wilcox GL (1980) Intrathecal morphine in mice: a new technique. Eur J Pharmacol 67:313–316. https://doi.org/10.1016/0014-2999(80)90515-4
doi: 10.1016/0014-2999(80)90515-4
pubmed: 6893963
Trevisan G, Rossato MF, Walker CIB, Oliveira SM, Rosa F, Tonello R, Silva CR, Machado P et al (2013) A novel, potent, oral active and safe antinociceptive pyrazole targeting kappa opioid receptors. Neuropharmacology 73:261–273. https://doi.org/10.1016/j.neuropharm.2013.06.011
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
pubmed: 11846609
pmcid: 11846609
Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, Zhang GX, Rostami A et al (2005) Motor neuron pathology in experimental autoimmune encephalomyelitis: Studies in THY1-YFP transgenic mice. Brain 128:1877–1886. https://doi.org/10.1093/brain/awh550
Schmitz K, Pickert G, Wijnvoord N et al (2013) Dichotomy of CCL21 and CXCR3 in nerve injury-evoked and autoimmunity-evoked hyperalgesia. Brain Behav Immun 32:186–200. https://doi.org/10.1016/j.bbi.2013.04.011
doi: 10.1016/j.bbi.2013.04.011
pubmed: 23643685
Solaro C, Brichetto G, Battaglia MA, Messmer Uccelli M, Mancardi GL (2005) Antiepileptic medications in multiple sclerosis: adverse effects in a three-year follow-up study. Neurol Sci 25:307–310. https://doi.org/10.1007/s10072-004-0362-9
doi: 10.1007/s10072-004-0362-9
pubmed: 15729492
Wang I-C, Chung C-Y, Liao F, Chen CC, Lee CH (2017) Peripheral sensory neuron injury contributes to neuropathic pain in experimental autoimmune encephalomyelitis. Sci Rep 7:1–14. https://doi.org/10.1038/srep42304
doi: 10.1038/srep42304
pubmed: 28127051
pmcid: 5428335
Taylor CP (2009) Mechanisms of analgesia by gabapentin and pregabalin - calcium channel α2-δ [Cavα2-δ] ligands. Pain 142:13–16
doi: 10.1016/j.pain.2008.11.019
Klafke JZ, da Silva MA, Trevisan G, Rossato MF, da Silva CR, Guerra GP, Villarinho JG, Rigo FK et al (2012) Involvement of the glutamatergic system in the nociception induced intrathecally for a TRPA1 agonist in rats. Neuroscience 222:136–146. https://doi.org/10.1016/j.neuroscience.2012.07.022
Mihai DP, Nitulescu GM, Ion GND et al (2019) Computational drug repurposing algorithm targeting TRPA1 calcium channel as a potential therapeutic solution for multiple sclerosis. Pharmaceutics 11:E446. https://doi.org/10.3390/pharmaceutics11090446
doi: 10.3390/pharmaceutics11090446
pubmed: 31480671
Dworkin RH, O’Connor AB, Audette J et al (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 85:S3–S14. https://doi.org/10.4065/mcp.2009.0649
Khan N, Smith MT (2014) Multiple sclerosis-induced neuropathic pain: pharmacological management and pathophysiological insights from rodent EAE models. Inflammopharmacology 22:1–22. https://doi.org/10.1007/s10787-013-0195-3
doi: 10.1007/s10787-013-0195-3
pubmed: 24234347
Tzellos TG, Papazisis G, Amaniti E, Kouvelas D (2008) Efficacy of pregabalin and gabapentin for neuropathic pain in spinal-cord injury: an evidence-based evaluation of the literature. Eur J Clin Pharmacol 64:851–858
doi: 10.1007/s00228-008-0523-5
Schmidt PC, Ruchelli G, Mackey SC, Carroll IR (2013) Perioperative gabapentinoids choice of agent, dose, timing, and effects on chronic postsurgical pain. Anesthesiology 119:1215–1221
doi: 10.1097/ALN.0b013e3182a9a896
Moran MM, Szallasi A (2018) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol 175:2185–2203
doi: 10.1111/bph.14044
Griggs RB, Santos DF, Laird DE, Doolen S, Donahue RR, Wessel CR, Fu W, Sinha GP et al (2019) Methylglyoxal and a spinal TRPA1-AC1-Epac cascade facilitate pain in the db/db mouse model of type 2 diabetes. Neurobiol Dis 127:76–86. https://doi.org/10.1016/j.nbd.2019.02.019
Düll MM, Riegel K, Tappenbeck J et al (2019) Methylglyoxal causes pain and hyperalgesia in human through C-fiber activation. Pain 1. https://doi.org/10.1097/j.pain.0000000000001644
Weyer-Menkhoff I, Lötsch J (2019) TRPA1 sensitization produces hyperalgesia to heat but not to cold stimuli in human volunteers. Clin J Pain 35:321–327. https://doi.org/10.1097/AJP.0000000000000677
doi: 10.1097/AJP.0000000000000677
pubmed: 30664549
de David Antoniazzi CT, De Prá SD-T, Ferro PR et al (2018) Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur J Pharm Sci 125:28–38. https://doi.org/10.1016/j.ejps.2018.09.012
doi: 10.1016/j.ejps.2018.09.012
pubmed: 30236550
Vriens J, Voets T (2019) Heat sensing involves a TRiPlet of ion channels. Br J Pharmacol 176:3893–3898. https://doi.org/10.1111/bph.14812
doi: 10.1111/bph.14812
pubmed: 31372975
Simmons DL, Botting RM, Hla T (2004) Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56:387–437
doi: 10.1124/pr.56.3.3
Hinz B, Cheremina O, Bachmakov J, Renner B, Zolk O, Fromm MF, Brune K (2007) Dipyrone elicits substantial inhibition of peripheral cyclooxygenases in humans: new insights into the pharmacology of an old analgesic. FASEB J 21:2343–2351. https://doi.org/10.1096/fj.06-8061com
doi: 10.1096/fj.06-8061com
pubmed: 17435173
Malvar DDC, Soares DM, Fabrício ASC et al (2011) The antipyretic effect of dipyrone is unrelated to inhibition of PGE 2 synthesis in the hypothalamus. Br J Pharmacol 162:1401–1409. https://doi.org/10.1111/j.1476-5381.2010.01150.x
doi: 10.1111/j.1476-5381.2010.01150.x
Tonello R, Fusi C, Materazzi S et al (2016) Phalpha1beta acts as a TRPA1 antagonist with antinociceptive effects in mice. Br J Pharmacol:57–69. https://doi.org/10.1111/bph.13652
Brusco I, Li Puma S, Chiepe KB et al (2019) Dacarbazine alone or associated with melanoma-bearing cancer pain model induces painful hypersensitivity by TRPA1 activation in mice. Int J Cancer. https://doi.org/10.1002/ijc.32648
De Logu F, Li Puma S, Landini L et al (2019) Schwann cells expressing nociceptive channel TRPA1 orchestrate ethanol-evoked neuropathic pain in mice. J Clin Invest. https://doi.org/10.1172/JCI128022
Newcombe J, Li H, Cuzner ML (1994) Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol Appl Neurobiol 20:152–162. https://doi.org/10.1111/j.1365-2990.1994.tb01174.x
doi: 10.1111/j.1365-2990.1994.tb01174.x
pubmed: 7521019
Ma MW, Wang J, Zhang Q et al (2017) NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 12:1–28. https://doi.org/10.1186/s13024-017-0150-7
doi: 10.1186/s13024-017-0150-7
Kamisli S, Ciftci O, Taslidere A, Basak Turkmen N, Ozcan C (2018) The beneficial effects of 18β-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mouse model. Immunopharmacol Immunotoxicol 40:344–352. https://doi.org/10.1080/08923973.2018.1490318
doi: 10.1080/08923973.2018.1490318
pubmed: 30052483
Benson C, Paylor JW, Tenorio G, Winship I, Baker G, Kerr BJ (2015) Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE). Exp Neurol 271:279–290. https://doi.org/10.1016/j.expneurol.2015.05.017
doi: 10.1016/j.expneurol.2015.05.017
pubmed: 26033473
Chaudhary P, Marracci G, Yu X, Galipeau D, Morris B, Bourdette D (2011) Lipoic acid decreases inflammation and confers neuroprotection in experimental autoimmune optic neuritis. J Neuroimmunol 233:90–96. https://doi.org/10.1016/j.jneuroim.2010.12.002
doi: 10.1016/j.jneuroim.2010.12.002
pubmed: 21215462
pmcid: 4987082
Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D (2015) Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 289:68–74. https://doi.org/10.1016/j.jneuroim.2015.10.011
doi: 10.1016/j.jneuroim.2015.10.011
pubmed: 26616873
pmcid: 4664888
Li B, Tan G-J, Lin H-Q et al (2018) Neuroprotective effects of α-lipoic acid on long-term experimental autoimmune encephalomyelitis. Eur Rev Med Pharmacol Sci 22:6517–6528. https://doi.org/10.26355/eurrev_201810_16066
doi: 10.26355/eurrev_201810_16066
pubmed: 30338822
Agathos E, Tentolouris A, Eleftheriadou I, Katsaouni P, Nemtzas I, Petrou A, Papanikolaou C, Tentolouris N (2018) Effect of α-lipoic acid on symptoms and quality of life in patients with painful diabetic neuropathy. J Int Med Res 46:1779–1790. https://doi.org/10.1177/0300060518756540
doi: 10.1177/0300060518756540
pubmed: 29517942
pmcid: 5991249
Olukman M, Önal A, Çelenk F et al (2018) Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats. Neural Regen Res 13:1657–1664. https://doi.org/10.4103/1673-5374.232530
doi: 10.4103/1673-5374.232530
pubmed: 30127129
pmcid: 6126136
Hassler SN, Ahmad FB, Burgos-Vega CC, Boitano S, Vagner J, Price TJ, Dussor G (2019) Protease activated receptor 2 (PAR2) activation causes migraine-like pain behaviors in mice. Cephalalgia 39:111–122. https://doi.org/10.1177/0333102418779548
doi: 10.1177/0333102418779548
pubmed: 29848111
Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Ineu RP, Guerra GP, Materazzi S et al (2013) Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum 65:2984–2995. https://doi.org/10.1002/art.38112
Waslo C, Bourdette D, Gray N, Wright K, Spain R (2019) Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr Treat Options Neurol 21:26–21. https://doi.org/10.1007/s11940-019-0566-1
doi: 10.1007/s11940-019-0566-1
pubmed: 31056714
Loy BD, Fling BW, Horak FB, Bourdette DN, Spain RI (2018) Effects of lipoic acid on walking performance, gait, and balance in secondary progressive multiple sclerosis. Complement Ther Med 41:169–174. https://doi.org/10.1016/j.ctim.2018.09.006
doi: 10.1016/j.ctim.2018.09.006
pubmed: 30477834
pmcid: 6263172