Type three secretion system in Salmonella Typhimurium: the key to infection.
Effector proteins
Enterobacteriaceae
Injectosome
Needle complex
Protein secretion
T3SS
Journal
Genes & genomics
ISSN: 2092-9293
Titre abrégé: Genes Genomics
Pays: Korea (South)
ID NLM: 101481027
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
26
01
2019
accepted:
12
02
2020
pubmed:
1
3
2020
medline:
27
1
2021
entrez:
1
3
2020
Statut:
ppublish
Résumé
Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
Sections du résumé
BACKGROUND
Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection.
OBJECTIVE
To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation.
METHODS
With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review.
CONCLUSION
This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
Identifiants
pubmed: 32112371
doi: 10.1007/s13258-020-00918-8
pii: 10.1007/s13258-020-00918-8
doi:
Substances chimiques
Type III Secretion Systems
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
495-506Références
FEMS Microbiol Rev. 2014 Jul;38(4):802-22
pubmed: 24484471
Cell Microbiol. 2003 Aug;5(8):501-11
pubmed: 12864810
Mol Microbiol. 1998 Oct;30(1):47-56
pubmed: 9786184
Trends Microbiol. 2006 Dec;14(12):519-26
pubmed: 17067800
Microbes Infect. 2000 Feb;2(2):145-56
pubmed: 10742687
Trends Microbiol. 1999 Aug;7(8):315-20
pubmed: 10431204
Mol Microbiol. 1995 Jan;15(1):25-38
pubmed: 7752894
Curr Opin Cell Biol. 2000 Aug;12(4):420-30
pubmed: 10873830
Mol Cell Proteomics. 2016 May;15(5):1598-609
pubmed: 26900162
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17745-50
pubmed: 20876096
J Bacteriol. 2003 Apr;185(7):2259-66
pubmed: 12644497
J Bacteriol. 2001 Feb;183(4):1159-67
pubmed: 11157927
J Bacteriol. 2003 Jun;185(11):3480-3
pubmed: 12754250
Curr Opin Microbiol. 2003 Feb;6(1):7-14
pubmed: 12615213
Nat Rev Microbiol. 2008 Jan;6(1):53-66
pubmed: 18026123
Nature. 2016 Dec 22;540(7634):597-601
pubmed: 27974800
Mol Microbiol. 1998 Oct;30(1):163-74
pubmed: 9786193
J Bacteriol. 1999 Mar;181(5):1388-94
pubmed: 10049367
J Bacteriol. 1994 Aug;176(15):4501-10
pubmed: 8045880
Nature. 2012 May 20;486(7402):276-9
pubmed: 22699623
Science. 2011 Mar 4;331(6021):1192-5
pubmed: 21385715
Mol Microbiol. 2000 Jun;36(5):1015-23
pubmed: 10844687
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):817-22
pubmed: 24379359
Nat Rev Microbiol. 2006 Nov;4(11):811-25
pubmed: 17041629
J Bacteriol. 2001 Oct;183(20):6036-45
pubmed: 11567004
J Biol Chem. 2017 Feb 24;292(8):3252-3261
pubmed: 28057754
J Mol Biol. 2010 Mar 12;396(5):1392-7
pubmed: 20060835
PLoS Pathog. 2011 Aug;7(8):e1002163
pubmed: 21829362
J Biol Chem. 2006 Jan 6;281(1):599-607
pubmed: 16246841
Mol Biosyst. 2008 Nov;4(11):1105-15
pubmed: 18931786
Infect Immun. 2005 Jun;73(6):3219-27
pubmed: 15908346
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4461-6
pubmed: 22388746
Science. 2003 Dec 5;302(5651):1757-60
pubmed: 14657497
Mol Microbiol. 2011 Oct;82(2):502-14
pubmed: 21923772
PLoS Pathog. 2013;9(4):e1003307
pubmed: 23633951
Nat Struct Mol Biol. 2018 Jul;25(7):583-590
pubmed: 29967543
Nature. 1993 Aug 12;364(6438):639-42
pubmed: 8350922
J Bacteriol. 2000 Apr;182(8):2262-8
pubmed: 10735870
Science. 2004 Nov 5;306(5698):1040-2
pubmed: 15528446
Annu Rev Microbiol. 2014;68:415-38
pubmed: 25002086
J Bacteriol. 1998 Sep;180(18):4775-80
pubmed: 9733677
J Bacteriol. 2002 Sep;184(17):4699-708
pubmed: 12169593
Protein Sci. 2011 Jan;20(1):75-86
pubmed: 21031487
Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10493-7
pubmed: 7937981
Front Microbiol. 2011 Apr 25;2:85
pubmed: 21833326
Protein Sci. 2013 May;22(5):614-27
pubmed: 23456854
PLoS Biol. 2007 Oct;5(10):2177-89
pubmed: 17760501
Microbes Infect. 2001 Jun;3(7):549-59
pubmed: 11418329
Science. 2011 Mar 4;331(6021):1188-91
pubmed: 21292939
Mol Microbiol. 1998 Oct;30(1):175-88
pubmed: 9786194
J Mol Biol. 2014 Aug 12;426(16):2958-69
pubmed: 24951833
Nature. 2006 Nov 30;444(7119):567-73
pubmed: 17136086
FEBS J. 2011 Feb;278(3):414-26
pubmed: 21182592
EMBO J. 2007 Jun 20;26(12):3015-24
pubmed: 17510628
Nat Struct Mol Biol. 2013 Jan;20(1):99-104
pubmed: 23222644
Nat Microbiol. 2016 Mar 07;1:16025
pubmed: 27572444
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):3076-80
pubmed: 20133635
Microbiol Mol Biol Rev. 1998 Jun;62(2):379-433
pubmed: 9618447
Int J Med Microbiol. 2004 Sep;294(2-3):95-102
pubmed: 15493819
Future Microbiol. 2012 Jun;7(6):685-703
pubmed: 22702524
Cell. 1994 Feb 25;76(4):717-24
pubmed: 8124710
Curr Microbiol. 2019 Jun;76(6):762-773
pubmed: 29785632
Mol Microbiol. 2009 Jan;71(2):449-60
pubmed: 19017268
Trends Microbiol. 2009 Apr;17(4):139-45
pubmed: 19299134
J Bacteriol. 1999 Dec;181(23):7212-20
pubmed: 10572123
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10225-30
pubmed: 10944190
Structure. 2011 May 11;19(5):603-12
pubmed: 21565695
J Biol Chem. 2011 Feb 11;286(6):4922-30
pubmed: 21138848
PLoS Pathog. 2010 Apr 01;6(4):e1000824
pubmed: 20368966
Food Microbiol. 2018 May;71:98-110
pubmed: 29366476
Microbes Infect. 2002 Jan;4(1):75-82
pubmed: 11825778
Trends Microbiol. 1997 Apr;5(4):148-56
pubmed: 9141189
Nat Rev Microbiol. 2017 Jun;15(6):323-337
pubmed: 28392566
Nature. 2001 Nov 1;414(6859):77-81
pubmed: 11689946
PLoS Genet. 2012 Sep;8(9):e1002983
pubmed: 23028376
Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11008-13
pubmed: 10984518
Cell Host Microbe. 2007 Mar 15;1(1):63-75
pubmed: 18005682
Nat Struct Mol Biol. 2009 May;16(5):468-76
pubmed: 19396170
Trends Biochem Sci. 2016 Feb;41(2):175-189
pubmed: 26520801
Mol Microbiol. 2013 Mar;87(6):1183-99
pubmed: 23336839
Curr Opin Microbiol. 2007 Feb;10(1):24-9
pubmed: 17208038
Traffic. 2008 Dec;9(12):2022-31
pubmed: 18778407
EMBO J. 1993 Oct;12(10):3779-87
pubmed: 8404849
Science. 1998 Apr 24;280(5363):602-5
pubmed: 9554854
Nature. 2006 Jun 1;441(7093):637-40
pubmed: 16738660
Microbiol Mol Biol Rev. 2012 Jun;76(2):262-310
pubmed: 22688814
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4098-103
pubmed: 25775540
Nature. 2008 May 1;453(7191):124-7
pubmed: 18451864
Elife. 2018 Mar 07;7:
pubmed: 29513215
J Mol Biol. 2007 Aug 31;371(5):1304-14
pubmed: 17617421
Mol Microbiol. 1997 May;24(4):747-56
pubmed: 9194702
Nat Rev Microbiol. 2015 Jun;13(6):343-59
pubmed: 25978706
Cell Host Microbe. 2017 Aug 9;22(2):217-231
pubmed: 28799907
Microbes Infect. 2000 Jul;2(8):907-13
pubmed: 10962274
Mol Microbiol. 1997 May;24(4):757-65
pubmed: 9194703
Infect Immun. 2000 Dec;68(12):6763-9
pubmed: 11083793
Biochemistry. 2010 May 18;49(19):4220-6
pubmed: 20397637
Biochim Biophys Acta. 2014 Aug;1843(8):1649-63
pubmed: 24512838
Infect Immun. 2000 Jun;68(6):3368-76
pubmed: 10816487
mBio. 2015 Oct 13;6(5):e01459-15
pubmed: 26463164
EMBO J. 2011 Jun 07;30(14):2948-61
pubmed: 21654632
PLoS One. 2017 Nov 8;12(11):e0187692
pubmed: 29117268
Sci Rep. 2016 Sep 30;6:33341
pubmed: 27686865
J Biol Chem. 2012 Jul 20;287(30):25303-11
pubmed: 22654099
Science. 2005 Oct 28;310(5748):674-6
pubmed: 16254184
Mol Microbiol. 1997 Dec;26(5):1035-46
pubmed: 9426140
Infect Immun. 2006 Aug;74(8):4391-400
pubmed: 16861624